Skip to main content
Log in

A platelet-like CeO2 mesocrystal enclosed by {100} facets: synthesis and catalytic properties

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Platelet-like CeO2 mesocrystals, constituted of 4–5 nm fused nanoparticles with interparticular voids along a common [002] axis, have successfully been synthesized through a benzyl alcohol-assisted solvothermal synthesis, followed by a topotactical transformation at 400 °C. The resulting CeO2 mesocrystal superstructure is enclosed by Tasker III type {100} facets. H2-TPR suggested that the as-made CeO2 mesocrystal surfaces are covered by reactive oxygen vacancies. Such oxygen vacancies can activate oxygen at low temperatures (<200 °C), and thereby catalyze CO and benzene oxidation effectively. Remarkably, the CO oxidation activity of CeO2 mesocrystal is 220 % as high as the traditional nanoparticle sample and a reaction rate of 0.53 μmol g −1cat  s−1 for CeO2 mesocrystal at 160 °C has been achieved. Such a rate is even higher than the best value reported previously (0.51 μmol g −1cat  s−1 for CeO2 nanorods). A similar superior catalytic property of CeO2 mesocrystals was also observed in the catalytic oxidation of more recalcitrant benzene.

Graphical Abstract

The formation scheme of mesocrystal CeO2 enclosed by Tasker III type {100} facets and the corresponding catalytic CO oxidation activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Scheme 1
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Arii T, Kishi A, Ogawa M, Sawada Y (2001) Thermal decomposition of cerium(III) acetate hydrate by a three-dimensional thermal analysis. Anal Sci 17:875–880

    Article  CAS  Google Scholar 

  • Bonzel HP, Krebs HJ (1982) Surface science approach to heterogenous catalysis: CO hydrogenation on transition-metals. Surf Sci 117:639–658

    Article  CAS  Google Scholar 

  • Carrettin S, Concepción P, Corma A, López Nieto JM, Puntes VF (2004) Nanocrystalline CeO2 increases the activity of Au for CO oxidation by two orders of magnitude. Angew Chem Int Ed 43:2538–2540

    Article  CAS  Google Scholar 

  • Cölfen H, Antonietti M (2005) Mesocrystals: inorganic superstructures made by highly parallel crystallization and controlled alignment. Angew Chem Int Ed 44:5576–5591

    Article  Google Scholar 

  • Cölfen H, Antonietti M (2008) Mesocrystal Systems. Mesocrystals and nonclassical crystallization. John Wiley & Sons, Hoboken, pp 113–177

    Chapter  Google Scholar 

  • Dang F, Hoshino T, Oaki Y, Hosono E, Zhou H, Imai H (2013) Synthesis of Li–Mn–O mesocrystals with controlled crystal phases through topotactic transformation of MnCO3. Nanoscale 5(6):2352–2357

    Article  CAS  Google Scholar 

  • Goniakowski J, Finocchi F, Noguera C (2008) Polarity of oxide surfaces and nanostructures. Rep Prog Phys 71:016501–016555

    Article  Google Scholar 

  • He C, Li P, Cheng J, Hao Z-P, Xu Z-P (2010) A Comprehensive study of deep catalytic oxidation of benzene, toluene, ethyl acetate, and their mixtures over Pd/ZSM-5 catalyst: mutual effects and kinetics. Water Air Soil Poll 209:365–376

    Article  CAS  Google Scholar 

  • Huang M, Fabris S (2008) CO adsorption and oxidation on ceria surfaces from DFT+U calculations. J Phys Chem C 112:8643–8648

    Article  CAS  Google Scholar 

  • Huang X, Tang S, Yang J, Tan Y, Zheng N (2011) Etching growth under surface confinement: an effective strategy To prepare mesocrystalline Pd nanocorolla. J Am Chem Soc 133:15946–15949

    Article  CAS  Google Scholar 

  • Kalyani V, Vasile BS, Ianculescu A, Buscaglia MT, Buscaglia V, Nanni P (2012) Hydrothermal synthesis of SrTiO3 mesocrystals: single crystal to mesocrystal transformation induced by topochemical reactions. Cryst Growth Des 12:4450–4456

    Article  CAS  Google Scholar 

  • Kim HS, Kim TW, Koh HL, Lee SH, Min BR (2005) Complete benzene oxidation over Pt–Pd bimetal catalyst supported on γ-alumina: influence of Pt–Pd ratio on the catalytic activity. Appl Catal A 280:125–131

    Article  CAS  Google Scholar 

  • Li T-Y, Chiang S-J, Liaw B-J, Chen Y-Z (2011) Catalytic oxidation of benzene over CuO/Ce1-x Mn x O2 catalysts. App Catal B 103:143–148

    Article  CAS  Google Scholar 

  • Liu J, Huang X, Li Y, Sulieman KM, He X, Sun F (2006) Self-Assembled CuO Monocrystalline Nanoarchitectures with Controlled Dimensionality and Morphology. Cryst Growth Des 6:1690–1696

    Article  CAS  Google Scholar 

  • Liu X, Zhou K, Wang L, Wang B, Li Y (2009a) Oxygen vacancy clusters promoting reducibility and activity of ceria nanorods. J Am Chem Soc 131:3140–3141

    Article  CAS  Google Scholar 

  • Liu Z, Wen XD, Wu XL, Gao YJ, Chen HT, Zhu J, Chu PK (2009b) Intrinsic dipole-field-driven mesoscale crystallization of core–shell ZnO mesocrystal microspheres. J Am Chem Soc 13:9405–9412

    Article  Google Scholar 

  • Lu R, Yuan J, Shi H, Li B, Wang W, Wang D, Cao M (2013) Morphology-controlled synthesis and growth mechanism of lead-free bismuth sodium titanate nanostructures via the hydrothermal route. Cryst Eng Comm 15:3984–3991

    Article  CAS  Google Scholar 

  • Mai HX, Sun LD, Zhang YW, Si R, Feng W, Zhang HP, Liu HC, Yan CH (2005) Shape-selective synthesis and oxygen storage behavior of ceria nanopolyhedra, nanorods, and nanocubes. J Phys Chem B 109:24380–24385

    Article  CAS  Google Scholar 

  • McLaren A, Valdes-Solis T, Li GQ, Tsang SC (2009) Shape and size effects of ZnO nanocrystals on photocatalytic activity. J Am Chem Soc 131:12540–12541

    Article  CAS  Google Scholar 

  • Niederberger M, Cölfen H (2006) Oriented attachment and mesocrystals: non-classical crystallization mechanisms based on nanoparticle assembly. Phys Chem Chem Phys 8:3271–3287

    Article  CAS  Google Scholar 

  • Niederberger M, Krumeich F, Hegetschweiler K, Nesper R (2001) An iron polyolate complex as a precursor for the controlled synthesis of monodispersed iron oxide colloids. Chem Mater 14:78–82

    Article  Google Scholar 

  • Niederberger M, Bard MH, Stucky GD (2002) Benzyl alcohol and transition metal chlorides as a versatile reaction system for the nonaqueous and low-temperature synthesis of crystalline nano-objects with controlled dimensionality. J Am Chem Soc 124:13642–13643

    Article  CAS  Google Scholar 

  • Oaki Y, Kotachi A, Miura T, Imai H (2006) Bridged nanocrystals in biominerals and their biomimetics: classical yet modern crystal growth on the nanoscale. Adv Funct Mater 16:1633–1639

    Article  CAS  Google Scholar 

  • Rodriguez JA, Ma S, Liu P, Hrbek J, Evans J, Perez M (2007) Activity of CeOx and TiOx nanoparticles grown on Au(111) in the water-gas shift reaction. Science 318:1757–1760

    Article  CAS  Google Scholar 

  • Si R, Flytzani-Stephanopoulos M (2008) Shape and crystal-plane effects of nanoscale ceria on the activity of Au-CeO2 catalysts for the water-gas shift reaction. Angew Chem Int Ed 47:2884–2887

    Article  CAS  Google Scholar 

  • Somorjai GA (1990) Mordren concepts in surface science and heterogeneous catalysis. J Phys Chem 94:1013–1023

    Article  CAS  Google Scholar 

  • Song R-Q, Cölfen H (2010) Mesocrystals-ordered nanoparticle superstructures. Adv Mater 22:1301–1330

    Article  CAS  Google Scholar 

  • Strickland–Constable RF (1968) Kinetics and mechanism of crystallization. Academic Press, New York

    Google Scholar 

  • Tang H, Chang JC, Shan Y, Lee S-T (2008) Surfactant-assisted alignment of ZnO nanocrystals to superstructures. J Phys Chem B 112:4016–4021

    Article  CAS  Google Scholar 

  • Tasker PW (1979) The stability of ionic crystal surfaces. J Phys C Solid State Phys 12:4977–4984

    Article  CAS  Google Scholar 

  • Wang T, Antonietti M, Cölfen H (2006) Calcite mesocrystals: “morphing” crystals by a polyelectrolyte. Chem Eur J 12:5722–5730

    Article  CAS  Google Scholar 

  • Weidenthaler C (2011) Pitfalls in the characterization of nanoporous and nanosized materials. Nanoscale 3:792–810

    Article  CAS  Google Scholar 

  • Wu XL, Xiong SJ, Liu Z, Chen J, Shen JC, Li TH, Wu PH, Chu PK (2011) Green light stimulates terahertz emission from mesocrystal microspheres. Nat Nano 6:103–106

    Article  CAS  Google Scholar 

  • Wu Z, Li M, Overbury SH (2012) On the structure dependence of CO oxidation over CeO2 nanocrystals with well-defined surface planes. J Catal 285:61–73

    Article  CAS  Google Scholar 

  • Xu AW, Antonietti M, Cölfen H, Fang YP (2006) Uniform hexagonal plates of vaterite CaCO3 mesocrystals formed by biomimetic mineralization. Adv Funct Mater 16:903–908

    Article  CAS  Google Scholar 

  • Yang S, Gao L (2006) Controlled synthesis and self-assembly of CeO2 nanocubes. J Am Chem Soc 128:9330–9331

    Article  CAS  Google Scholar 

  • Yang MX, Gracias DH, Jacobs PW, Somorjai GA (1998) Lithographic fabrication of model systems in heterogeneous catalysis and surface science studies. Langmuir 14:1458–1464

    Article  CAS  Google Scholar 

  • Ye J, Liu W, Cai J, Chen S, Zhao X, Zhou H, Qi L (2010) Nanoporous anatase TiO2 mesocrystals: additive-free synthesis, remarkable crystalline-phase stability, and improved lithium insertion behavior. J Am Chem Soc 133:933–940

    Article  Google Scholar 

  • Yu S-H, Colfen H, Tauer K, Antonietti M (2005) Tectonic arrangement of BaCO3 nanocrystals into helices induced by a racemic block copolymer. Nat Mater 4:51–55

    Article  CAS  Google Scholar 

  • Zhang Q, Liu S-J, Yu S-H (2009) Recent advances in oriented attachment growth and synthesis of functional materials: concept, evidence, mechanism, and future. J Mater Chem 19:191–207

    Article  CAS  Google Scholar 

  • Zhang J, Kumagai H, Yamamura K, Ohara S, Takami S, Morikawa A, Shinjoh H, Kaneko K, Adschiri T, Suda A (2011) Extra-low-temperature oxygen storage capacity of CeO2 nanocrystals with cubic facets. Nano Lett 11:361–364

    Article  CAS  Google Scholar 

  • Zhong L-S, Hu J-S, Cao A-M, Liu Q, Song W-G, Wan L-J (2007) 3D flowerlike ceria micro/nanocomposite structure and its application for water treatment and CO removal. Chem Mater 19:1648–1655

    Article  CAS  Google Scholar 

  • Zhou K, Wang X, Sun X, Peng Q, Li Y (2005) Enhanced catalytic activity of ceria nanorods from well-defined reactive crystal planes. J Catal 229:206–212

    Article  CAS  Google Scholar 

  • Zhu K, Hu J, Kuebel C, Richards R (2006) Efficient preparation and catalytic activity of MgO(111) nanosheets. Angew Chem Int Ed 45:7277–7281

    Article  CAS  Google Scholar 

Download references

Acknowledgments

KZ is grateful for the financial support from National Natural Science Foundation of China (21006024), CNPC Innovation Foundation (2011D-5006-0507), Shanghai Pujiang Program (11PJ1402600), and New Century Excellent Talents in University (NCET-11-0644).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xingyi Wang or Kake Zhu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 4761 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Deng, W., Wang, X., Jiao, F. et al. A platelet-like CeO2 mesocrystal enclosed by {100} facets: synthesis and catalytic properties. J Nanopart Res 15, 1944 (2013). https://doi.org/10.1007/s11051-013-1944-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-013-1944-3

Keywords

Navigation