Skip to main content

Advertisement

Log in

Probing the cellular damage in bacteria induced by GaN nanoparticles using confocal laser Raman spectroscopy

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Understanding the mechanism of nanoparticle (NP) induced toxicity in microbes is of potential importance to a variety of disciplines including disease diagnostics, biomedical implants, and environmental analysis. In this context, toxicity to bacterial cells and inhibition of biofilm formation by GaN NPs and their functional derivatives have been investigated against gram positive and gram negative bacterial species down to single cellular level. High levels of inhibition of biofilm formation (>80 %) was observed on treatments with GaN NPs at sub-micro molar concentrations. These results were substantiated with morphological features investigated with field emission scanning electron microscope, and the observed changes in vibrational modes of microbial cells using Raman spectroscopy. Raman spectra provided molecular interpretation of cell damage by registering signatures of molecular vibrations of individual living microbial cells and mapping the interplay of proteins at the cell membrane. As compared to the untreated cells, Raman spectra of NP-treated cells showed an increase in the intensities of characteristic protein bands, which confirmed membrane damage and subsequent release of cellular contents outside the cells. Raman spectral mapping at single cellular level can facilitate understanding of the mechanistic aspect of toxicity of GaN NPs. The effect may be correlated to passive diffusion causing mechanical damage to the membrane or ingress of Ga3+ (ionic radius ~0.076 nm) which can potentially interfere with bacterial metabolism, as it resembles Fe2+ (ionic radius ~0.077 nm), which is essential for energy metabolism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Abedini F, Hosseinkhani H, Ismail M, Domb AJ, Omar AR, Chong PP, Hong PD, Yu DS, Farber IY (2012) Cationized dextran nanoparticle-encapsulated CXCR4-siRNA enhanced correlation between CXCR4 expression and serum alkaline phosphatase in a mouse model of colorectal cancer. Int J Nanomed 7:4159–4168

    CAS  Google Scholar 

  • Anselme K, Davidson P, Popa AM, Giazzon M, Liley M, Ploux L (2010) The interaction of cells and bacteria with surfaces structured at the nanometre scale. Acta Biomater 6:3824–3846

    Article  CAS  Google Scholar 

  • Auffan M, Rose J, Wiesner MR, Bottero J-Y (2009) Chemical stability of metallic nanoparticles: a parameter controlling their potential cellular toxicity in vitro. Environ Pollut 157:1127–1133

    Article  CAS  Google Scholar 

  • Bordi C, de Bentzmann S (2011) Hacking into bacterial biofilms: a new therapeutic challenge. Ann Intensive care 1:19

    Article  Google Scholar 

  • Chan JW, Winhold H, Corzett MH, Ulloa JM, Cosman M, Balhorn R, Huser T (2007) Monitoring dynamic protein expression in living E. coli. Bacterial cells by laser tweezers Raman spectroscopy. Cytometry A 71A:468–474

    Article  CAS  Google Scholar 

  • Chapman J, Wier E, Regan F (2010) Period four metal nanoparticles on the inhibition of biofouling. Colloids Surf B 78:208–216

    Article  CAS  Google Scholar 

  • Chen L, Wen Y-M (2011) The role of bacterial biofilm in persistent infections and control strategies. Int J Oral Sci 3:66–73

    Article  Google Scholar 

  • Chitambar CR, Matthaeus WG, Antholine WE, Graff K, O’Brien WJ (1988) Inhibition of leukemic HL60 cell growth by transferrin-gallium: effects on ribonucleotide reductase and demonstration of drug synergy with hydroxyurea. Blood 72:1930–1936

    CAS  Google Scholar 

  • Choi O, Deng KK, Kim M-J, Ross L, Surampalli RY, Hu Z (2008) The inhibitory effects of silver nanoparticles silver ions and silver chloride colloids on microbial growth. Water Res 42:3066–3074

    Article  CAS  Google Scholar 

  • Choi O, Yu C-P, Fernandez GE, Hu Z (2010) Interactions of nanosilver with Escherichia coli cells in planktonic and biofilm cultures. Water Res 44:6095–6103

    Article  CAS  Google Scholar 

  • Choo-Smith LP, Van Maquelin K, Vreeswijk T, Bruining HA, Puppels GJ, Ngo Thi NA, Kirschner C, Naumann D, Ami D, Villa AM et al (2001) Investigating microbial (micro)colony heterogeneity by vibrational spectroscopy. Appl Environ Microbiol 67:1461–1469

    Article  CAS  Google Scholar 

  • Coenye T, Nelis HJ (2010) In vitro and in vivo model systems to study microbial biofilm formation. J Micro Methods 83:89–105

    Article  CAS  Google Scholar 

  • Flemming H-C, Wingender J (2010) The biofilm matrix. Nat Rev Microbiol 8:623–633

    CAS  Google Scholar 

  • Gil PR, Oberdorster G, Elder A, Puntes V, Parak WJ (2010) Correlating physico-chemical with toxicological properties of nanoparticles: the present and the future. ACS Nano 4:5527–5531

    Article  Google Scholar 

  • Haka AS, Volynskaya Z, Gardecki JA, Nazemi J, Lyons J, Hicks D, Fitzmaurice M, Dasari RR, Crowe JP, Field MS (2006) In vivo margin assessment during partial mastectomy breast surgery using Raman spectroscopy. Cancer Res 66:3317–3322

    Article  CAS  Google Scholar 

  • Hall-Stoodley L, Costerton JW, Stoodley P (2004) Bacterial biofilms: from the Natural environment to infectious diseases. Nat Rev Microbiol 2:95–108

    Article  CAS  Google Scholar 

  • Harz M, Rosch P, Peschke K-D, Ronneberger O, Burkhardt H, Popp J (2005) Micro-Raman spectroscopic identification of bacterial cells of the genus Staphylococcus and dependence on their cultivation conditions. Analyst 130:1543–1550

    Article  CAS  Google Scholar 

  • Hassett DJ (1993) Cloning and characterization of the Pseudomonas aeruginosa sodA and sodB genes encoding manganese- and iron-cofactored superoxide dismutase: demonstration of increased manganese superoxide dismutase activity in alginate-producing bacteria. J Bacteriol 175:7658–7665

    CAS  Google Scholar 

  • Hequet A, Humblot V, Berjeaud J, Pradier C (2011) Optimized grafting of antimicrobial peptides on stainless steel surface and biofilm resistance tests. Colloids Surf B 84:301–309

    Article  CAS  Google Scholar 

  • Hoiby N, Ciofu O, Johansen KH, Song Z, Moser C, Jensen PO, Molin S, Givskov M, Tolker-Nielsen T, Bjarnsholt T (2011) The clinical impact of bacterial biofilms. Int J Oral Sci 3:55–65

    Article  Google Scholar 

  • Hosseinkhani H, Hosseinkhani M, Gabrielson NP, Pack DW, Khademhosseini A, Kobayashi H (2008) DNA nanoparticles encapsulated in 3D tissue-engineered scaffolds enhance osteogenic differentiation of mesenchymal stem cells. J Biomed Mater Res A 85A:47–60

    Article  CAS  Google Scholar 

  • Ivleva NP, Wagner M, Szkola A, Horn H, Niessner R, Haisch C (2010) Label-free in situ SERS imaging of biofilms. J Phys Chem B 114:10184–10194

    Article  CAS  Google Scholar 

  • Jewett SA, Makowski MS, Andrews B, Manfra MJ, Ivanisevic A (2012) Gallium nitride is biocompatible and non-toxic before and after functionalization with peptides. Acta Biomater 8:728–733

    Article  CAS  Google Scholar 

  • Kaneko Y, Thoendel M, Olakanmi O, Britigan BE, Singh PK (2007) The transition metal gallium disrupts Pseudomonas aeruginosa iron metabolism and has antimicrobial and antibiofilm activity. J Clin Invest 117:877–888

    Article  CAS  Google Scholar 

  • Krafft C, Knetschke T, Siegner A, Funk RHW, Salzer R (2003) Mapping of single cells by near infrared Raman microspectroscopy. Vib Spectrosc 32:75–83

    Article  CAS  Google Scholar 

  • Liu S, Wei L, Hao L, Fang N, Chang MW, Xu R, Yang Y, Chen Y (2009) Sharper and faster “nano darts” kill more bacteria: a study of antibacterial activity of individually dispersed pristine single-walled carbon nanotube. ACS Nano 3:3891–3902

    Article  CAS  Google Scholar 

  • Liu R, Liu J, Zhou X, Jiang G (2011) Application of Raman-based techniques to on-site and in vivo analysis. Trends Anal Chem 30:1462–1476

    Article  CAS  Google Scholar 

  • Liu X, Chen G, Keller AA, Su C (2013) Effects of dominant material properties on the stability and transport of TiO2 nanoparticles and carbon nanotubes in aquatic environments: from synthesis to fate. Environ Sci Process Impacts 15:169–189

    Article  CAS  Google Scholar 

  • Mahmoudi M, Hosseinkhani H, Hosseinkhani M, Boutry S, Simchi A, Journeay WS, Subramani K, Laurent S (2011) Magnetic resonance imaging tracking of stem cells in vivo using iron oxide nanoparticles as a tool for the advancement of clinical regenerative medicine. Chem Rev 111:253–280

    Article  CAS  Google Scholar 

  • Monteiro DR, Gorup LF, Takamiya AS, Ruvollo-Filho AC, Rodrigues de Camargo E, Barbosa DB (2009) The growing importance of materials that prevent microbial adhesion: antimicrobial effect of medical devices containing silver. Int J Antimicrob Agents 34:103–110

    Article  CAS  Google Scholar 

  • Murthy PS, Venkatesan R (2009) Industrial biofilms and their control. In: Flemming HC, Murthy PS, Venkatesan R, Cooksey K (eds) Marine and industrial biofouling, Springer series on biofilms. Springer, Heidelberg, pp 65–103

    Chapter  Google Scholar 

  • Murthy PS, Sahoo P, Venugopalan VP, Dhara S, Saini G, Das A, Tyagi AK (2011) Gallium oxide nanoparticle induced inhibition of bacterial adhesion and biofilm formation. IEEE 2011:490–493. doi:10.1109/ICONSET.2011.6168010

    Google Scholar 

  • Narasimhan J, Ancholine WE, Chitambar CR (1992) Effect of gallium on the tyrosyl radical of the iron-dependent M2 subunit of ribonucleotide reductase. Biochem Pharmacol 44:2403–2408

    Article  CAS  Google Scholar 

  • Nel AE, Madler L, Velegol D, Xia T, Hoek EMV, Somasundaran P, Klaessig F, Castranova V, Thompson M (2009) Understanding biophysicochemical interactions at the nano–bio interface. Nat Mater 8:543–557

    Article  CAS  Google Scholar 

  • Niemeyer CM (2001) Nanoparticles, proteins, and nucleic acids: biotechnology meets materials science. Angew Chem Int Ed 40:4128–4158

    Article  CAS  Google Scholar 

  • Olakanmi O, Britigan BE, Schlesinger LS (2000) Gallium disrupts iron metabolism of mycobacteria residing within human macrophages. Infect Immun 68:5619–5627

    Article  CAS  Google Scholar 

  • Premasiri WR, Mori DT, Klempner MS, Krieger N, Joness G II, Ziegler LD (2005) Characterization of the surface enhanced Raman scattering of bacteria. J Phys Chem B109:312–320

    Google Scholar 

  • Rogan MP, Taggart CC, Greene CM, Murphy PG, ONeill SJ, Mc Elvaney NG (2004) Loss of microbicidal activity and increased formation of biofilm due to decreased lactoferrin activity in patients with cystic fibrosis. J Infect Dis 190:1245–1253

    Article  CAS  Google Scholar 

  • Rosch P, Harz M, Schmitt M, Peschke K, Ronneberger O, Burkhardt H, Motzkus H, Lankers M, Hofer S, Thiele H et al (2005) Chemotaxonomic identification of single bacteria by micro-Raman spectroscopy: application to clean room relevant biological contaminations. Appl Environ Microbiol 71:1626–1637

    Article  Google Scholar 

  • Ruparelia PJ, Chatterjee AK, Duttagupta SP, Mukherji S (2008) Strain specificity in antimicrobial activity of silver and copper nanoparticles. Acta Biomater 4:707–716

    Article  CAS  Google Scholar 

  • Saar BG, Zeng YN, Freudiger CW, Liu YS, Hummel ME, Xie XS, Ding SY (2010) Label-free real-time monitoring of biomass processing with stimulated Raman scattering microscopy. Angew Chem Int Ed Engl 49:5476–5479

    Article  CAS  Google Scholar 

  • Sahoo P, Dhara S, Das CR, Dash S, Tyagi AK, Raj B, Chandramohan P, Srinivasan MP (2010) Surface optical modes in GaN nanowires. Int J Nanotechnol 7:823–832

    Article  CAS  Google Scholar 

  • Sahoo P, Dhara S, Dash S, Tyagi AK (2011) One dimensional GaN nanostructures: growth kinetics and applications. Nanosci Nanotechnol Asia 2:140–170

    Google Scholar 

  • Sahoo P, Dhara S, Amirthapandian S, Kamruddin M, Dash S, Tyagi AK (2012) Role of surface polarity in self-catalyzed nucleation and evolution of GaN nanostructures. Cryst Growth Des 2:2375–2381

    Article  Google Scholar 

  • Sahoo P, Sumathi S, Dhara S, Saini G, Rangarajan S, Tyagi AK (2013) Direct label free ultrasensitive impedimetric DNA biosensor using dendrimer functionalized GaN nanowires. Biosens Bioelectron 15:164–170

    Article  Google Scholar 

  • Sandt C, Smith TP, Pink J, Brennan L, Pink D (2007) Confocal Raman microspectroscopy as a tool for studying the chemical heterogeneities of biofilms in situ. J Appl Microbiol 103:1808–1820

    Article  CAS  Google Scholar 

  • Schuster KC, Urlaub E, Gapes JR (2000) Single-cell analysis of bacteria by Raman microscopy: spectral information on the chemical composition of cells and on the heterogeneity in a culture. J Microbiol Methods 42:29–38

    Article  CAS  Google Scholar 

  • Siel JR, Webster TJ (2011) Reduced Staphylococcus aureus proliferation and biofilm formation on zinc oxide nanoparticle PVC composite surfaces. Acta Biomater 7:2579–2584

    Article  Google Scholar 

  • Simoes M, Simoes LC, Vieira MJ (2010) A review of current and emergent biofilm control strategies. LWT Food Sci 43:573–583

    Article  CAS  Google Scholar 

  • Singamaneni S, Gupta M, Yang R, Tomczak MM, Naik RR, Wang ZL, Tsukruk VV (2009) Nondestructive in situ identification of crystal orientation of anisotropic ZnO nanostructures. ACS Nano 3:2593–2600

    Article  CAS  Google Scholar 

  • Singh PK, Parsek MR, Greenberg EP, Welsh MJ (2002) A component of innate immunity prevents bacterial biofilm development. Nature 417:552–555

    Article  CAS  Google Scholar 

  • Sinha R, Karan R, Sinha A, Khare SK (2011) Interaction and nanotoxic effect of ZnO and Ag nanoparticles on mesophilic and halophilic bacterial cells. Bioresour Technol 102:1516–1522

    Article  CAS  Google Scholar 

  • Socrates G (2001) Infrared and Raman characteristic group frequencies: tables and charts. Wiley, Chichester. ISBN:0-470-09307-2

  • Sondi I, Salopek-Sondi B (2004) Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria. Colloid Interface Sci 275:177–182

    Article  CAS  Google Scholar 

  • Stephen M (2008) Life as a nanoscale phenomenon. Angew Chem Int Ed 47:5306–5320

    Article  Google Scholar 

  • Subramani K, Hosseinkhani H, Khraisat A, Hosseinkhani M, Pathak Y (2009) Targeting nanoparticles as drug delivery systems for cancer treatment. Curr Nanosci 5:135–140

    Article  CAS  Google Scholar 

  • Subramani K, Pathakb S, Hosseinkhani H (2012) Recent trends in diabetes treatment using nanotechnology. Dig J Nanomaterials Biostructures 7:85–95

    Google Scholar 

  • Takahashi A, Yomoda S, Ushijima Y, Kobayashi I, Inuoue M (1995) Ofloxacin norfloxacin and ceftazidime increase the production of alginate and promote the formation of biofilm of Pseudomonas aeruginosa in vitro. J Antimicrob Chemother 36:743–745

    Article  CAS  Google Scholar 

  • Valappil SP, Ready D, Abou EA, Pickup DM, O’Dell LA, Chrzanowski W, Pratten J, Newport RJ, Smith ME, Wilson M et al (2009) Controlled delivery of antimicrobial gallium ions from phosphate-based glasses. Acta Biomater 5:1198–1210

    Article  CAS  Google Scholar 

  • Vitol EA, Orynbayeva Z, Bouchard MJ, Azizkhan-Clifford J, Friedman G, Gogotsi Y (2009) In situ intracellular spectroscopy with surface enhanced Raman spectroscopy-enabled nanopipettes. ACS Nano 3:3529–3536

    Article  CAS  Google Scholar 

  • Wagner V, Dullaart A, Bock AK, Zweck A (2006) The emerging nanomedicine landscape. Nat Biotechnol 24:1211–1217

    Article  CAS  Google Scholar 

  • Wagner M, Ivleva NP, Haisch C, Niessner R, Horn H (2009) Combined use of confocal laser scanning microscopy and Raman microscopy: investigations on EPS-Matrix. Water Res 43:63–76

    Article  CAS  Google Scholar 

  • Wingender J, Flemming HC (2011) Biofilms in drinking water and their role as reservoir for pathogens. Int J Hyg Environ Health 214:417–423

    Article  Google Scholar 

  • Yan GH, Wang GJ, Li YC (1991) Effects of alpha-dimethylamino-cyclohexoxyl-dimethyl gallium on ultrastructure of erythrocytic stage of Plasmodium berghei and P yoelii. Acta Pharmacol Sin 12:530–533

    CAS  Google Scholar 

  • Yoon K, Byeon JH, Park J, Hwang J (2007) Susceptibility constants of Escherichia coli and Bacillus subtilis to silver and copper nanoparticles. Sci Total Environ 373:572–575

    Article  CAS  Google Scholar 

  • Zhang L, Jiang Y, Ding Y, Daskalakis N, Jeuken L, Povey M, O’Neill AJ, York DW (2010) Mechanistic investigation into antibacterial behaviour of suspensions of ZnO nanoparticles against E. coli. J Nanopart Res 12:1625–1636

    Article  CAS  Google Scholar 

  • Zhang H, Ji Z, Xia T, Meng H, Low-Kam C, Liu R, Pokhrel S, Lin S, Wang X, Liao YP, Wang M, Li L, Rallo R, Damoiseaux R, Telesca D, Mädler L, Cohen Y, Zink JI, Nel AE (2012) Use of metal oxide nanoparticle band gap to develop a predictive paradigm for oxidative stress and acute pulmonary inflammation. ACS Nano 273:4349–4368

    Article  Google Scholar 

Download references

Acknowledgments

We thank M. Kamurudin, SND for FESEM analysis, and S. Dash, SND, IGCAR for general support and encouragement.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Prasana Sahoo or S. Dhara.

Additional information

Prasana Sahoo and P. Sriyutha Murthy have contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supporting Information (DOCX 1244 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sahoo, P., Murthy, P.S., Dhara, S. et al. Probing the cellular damage in bacteria induced by GaN nanoparticles using confocal laser Raman spectroscopy. J Nanopart Res 15, 1841 (2013). https://doi.org/10.1007/s11051-013-1841-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-013-1841-9

Keywords

Navigation