Skip to main content
Log in

Morphologically different WO3 nanocrystals in photoelectrochemical water oxidation

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Different morphologies of WO3 nanocrystals such as nanorods and nanoplates have been obtained under hydrothermal conditions using ammonium metatungstate as the precursor in presence of different organic acids such as citric, oxalic, and tartaric acid in the reaction medium. Detailed characterization of the crystal structure, particle morphology, and optical band gap of the synthesized powders have been done by X-ray diffraction, transmission electron microscopy, scanning electron microscopy and solid-state UV–visible spectroscopy study. The as-synthesized materials are WO3 hydrates with orthorhombic phase which transform to the hexagonal WO3 through dehydration upon heating at 350 °C. The resultant products are crystalline with nanoscale dimensions. Finally, the photoactivity of the synthesized materials annealed at 500 °C has been compared employing in photoelectrochemical water oxidation under the illumination of AM 1.5G simulated solar light (100 mWcm−2). The photocurrent measurements upon irradiation of light exhibit obvious photocatalytic activity with a photocurrent of about 0.77, 0.61, and 0.65 mAcm−2 for the WO3 film derived with the oxalic acid, tartaric, and citric acid assisting agents, respectively, at 1.8 V versus Ag/AgCl electrode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Amano F, Lib D, Ohtani B (2010) Fabrication and photoelectrochemical property of tungsten(VI) oxide films with a flake-wall structure. Chem Commun 46:2769–2771

    Article  CAS  Google Scholar 

  • Bamwenda G, Arakawa H (2001) The visible light induced photocatalytic activity of tungsten trioxide powders. App Catal A Gen 210:181–191

    Article  CAS  Google Scholar 

  • Boukriba M, Sediri F, Gharbi N (2010) Hydrothermal synthesis of WO3.1/3H2O nanorods and study of their electrical properties. Polyhedron 29:2070–2074

    Article  CAS  Google Scholar 

  • Butler MA (1977) Photoelectrolysis and physical properties of the semiconducting electrode WO3. J Appl Phys 48:1914–1920

    Article  CAS  Google Scholar 

  • Gu Z, Ma Y, Yang W, Zhang G, Yao J (2005) Self-assembly of highly oriented one-dimensional h-WO3 nanostructures. Chem Commun 3597–3599

  • Hjelm A, Granqvist CG, Wills JM (1996) Electronic structure and optical properties of WO3, LiWO3, NaWO3, and HWO3 Phys. Rev B 54:2436–2445

    Article  CAS  Google Scholar 

  • Hodes G, Cahen D, Manassen J (1976) Tungsten trioxide as a photoanode for photoelectrochemical cell (PEC). Nature 260:312–313

    Article  CAS  Google Scholar 

  • Hong SJ, Jun H, Borse PH, Lee JS (2009) Size effects of WO3 nanocrystals for photooxidation of water in particulate suspension and photoelectrochemical film systems. Int J Hydrogen Energy 34:3234–3242

    Article  CAS  Google Scholar 

  • Jiao Z, Wang J, Ke L, Sun XW, Demir HV (2011) Morphology-tailored synthesis of tungsten trioxide (hydrate) thin films and their photocatalytic properties. ACS Appl Mater Interfaces 3:23–229

    Article  Google Scholar 

  • Kominami H, Yabutani K, Yamamoto T, Kera Y, Ohtani B (2001) Synthesis of highly active tungsten(VI) oxide photocatalysts for oxygen evolution by hydrothermal treatment of aqueous tungstic acid solutions. J Mater Chem 11:3222–32227

    Article  CAS  Google Scholar 

  • Lassner E, Schubert WD (1999) Tungsten: properties, chemistry, technology of the element, alloys, and chemical compounds. Springer, Berlin

    Google Scholar 

  • Lee K, Seo WS, Park JT (2003) Synthesis and optical properties of colloidal tungsten oxide nanorods. J Am Chem Soc 125:3408–3409

    Article  CAS  Google Scholar 

  • Lee SH, Deshpande R, Parilla PA, Jones KM, To B, Mahan AH, Dillon AC (2006) Crystalline WO3 nanoparticles for highly improved electrochromic applications. Adv Mater 18:763–766

    Article  CAS  Google Scholar 

  • Li XL, Liu JF, Li YD (2003) Large-scale synthesis of tungsten oxide nanowires with high aspect ratio. Inorg Chem 42:921–924

    Article  CAS  Google Scholar 

  • Li XL, Lou TJ, Sun XM, Li YD (2004) Highly sensitive WO3 hollow-sphere gas sensors. Inorg Chem 43:5442–5449

    Article  CAS  Google Scholar 

  • Lin HM, Hsu CM, Yang HY, Lee PY, Yang CC (1994) Nanocrystalline WO3-based H2S sensors. Sens Actuators B 22:63–68

    Article  Google Scholar 

  • Liu Y, Liu CY, Zhang ZY (2008) Effects of carboxylic acids on the microstructure and performance of titania nanocrystals. Chem Eng J 138:596–601

    Article  CAS  Google Scholar 

  • Llopis E, Ramirez JA, Cervilla A (1986) Tungsten (VI)-gluconic acid complexes: polarimetric and 13C-n.m.r. studies in an excess of tungsten (VI). Transition Met Chem 11:489–494

    Article  CAS  Google Scholar 

  • Michailovski A, Krumeich F, Patzke GR (2004) Hierarchical growth of mixed ammonium molybdenum/tungsten bronze nanorods. Chem Mater 16:1433–1440

    Article  CAS  Google Scholar 

  • Rajagopal S, Nataraj D, Mangalaraj D, Djaoued Y, Robichaud J, Khyzhun OY (2009) Controlled growth of WO3 nanostructures with three different morphologies and their structural, optical, and photodecomposition studies. Nanoscale Res Lett 4:1335–1342

    Article  CAS  Google Scholar 

  • Santato C, Ulmann M, Augustynski J (2001) Photoelectrochemical properties of nanostructured tungsten trioxide films. J Phys Chem B 105:936–940

    Article  CAS  Google Scholar 

  • Su J, Feng X, Sloppy JD, Guo L, Grimes CA (2011) Vertically aligned WO3 nanowire arrays grown directly on transparent conducting oxide coated glass: synthesis and photoelectrochemical properties. Nano Lett 11:203–208

    Article  CAS  Google Scholar 

  • Takeda Y, Kato N, Fukano T, Takeichi A, Motohiro T, Kawai S (2004) WO3/metal thin-film bilayered structures as optical recording materials. J Appl Phys 96:2417–2422

    Article  CAS  Google Scholar 

  • Wang H, Lindgren T, He J, Hagfeldt A, Lindquist SE (2000) Photoelectrochemistry of nanostructured WO3 thin film electrodes for water oxidation: mechanism of electron transport. J Phys Chem B 104:5686–5696

    Article  CAS  Google Scholar 

  • Xiong YJ, Xia YN (2007) Shape-controlled synthesis of metal nanostructures: the case of palladium. Adv Mater 19:3385–3391

    Article  CAS  Google Scholar 

  • Zhao ZG, Miyauchi M (2008) Nanoporous-walled tungsten oxide nanotube as highly active visible-light-driven photocatalysts. Angew Chem Int Ed 47:7051–7055

    Article  CAS  Google Scholar 

  • Zhao ZG, Liu ZF, Miyauchi M (2010) Nature-inspired construction, characterization, and photocatalytic properties of single-crystalline tungsten oxide octahedral. Chem Commun 46:3321–3323

    Article  CAS  Google Scholar 

  • Zheng H, Tachibana Y, Kalantar-zadeh K (2010) Dye-sensitized solar cells based on WO3. Langmuir 26:19148–19152

    Article  CAS  Google Scholar 

  • Zheng H, Ou JZ, Strano MS, Kaner RB, Mitchell A, Kalantar-zadeh K (2011) Nanostructured tungsten oxide—properties, synthesis, and applications. Adv Funct Mater 21:2175–2196

    Article  CAS  Google Scholar 

  • Zhou L, Zou J, Yu M, Lu P, Wei J, Qian Y, Wang Y, Yu C (2008a) Green synthesis of hexagonal-shaped WO3·0.33H2O nanodiscs composed of nanosheets. Cryst Growth Des 8:3993–3998

    Article  CAS  Google Scholar 

  • Zhou L, Wang W, Xu H (2008b) Controllable synthesis of three-dimensional well-defined BiVO4 mesocrystals via a facile additive-free aqueous strategy. Cryst Growth Des 8:728–733

    Article  CAS  Google Scholar 

  • Zhu J, Wang S, Xie S, Li H (2011) Hexagonal single crystal growth of WO3 nanorods along a [110] axis with enhanced adsorption capacity. Chem Commun 47:4403–4405

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research (paper) has been done for the Hydrogen Energy R&D Center that is one of the twenty-first century Frontier R&D Programs funded by the Ministry of Science and Technology, Republic of Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin-Ook Baeg.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (57 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Biswas, S.K., Baeg, JO., Moon, SJ. et al. Morphologically different WO3 nanocrystals in photoelectrochemical water oxidation. J Nanopart Res 14, 667 (2012). https://doi.org/10.1007/s11051-011-0667-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-011-0667-6

Keywords

Navigation