Skip to main content
Log in

Laser ablation and deposition of wide bandgap semiconductors: plasma and nanostructure of deposits diagnosis

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Nanostructured CdS and ZnS films on Si (100) substrates were obtained by nanosecond pulsed laser deposition at the wavelengths of 266 and 532 nm. The effect of laser irradiation wavelength on the surface structure and crystallinity of deposits was characterized, together with the composition, expansion dynamics and thermodynamic parameters of the ablation plume. Deposits were analyzed by environmental scanning electron microscopy, atomic force microscopy and X-ray diffraction, while in situ monitoring of the plume was carried out with spectral, temporal and spatial resolution by optical emission spectroscopy. The deposits consist of 25–50 nm nanoparticle assembled films but ablation in the visible results in larger aggregates (150 nm) over imposed on the film surface. The aggregate free films grown at 266 nm on heated substrates are thicker than those grown at room temperature and in the former case they reveal a crystalline structure congruent with that of the initial target material. The observed trends are discussed in reference to the light absorption step, the plasma composition and the nucleation processes occurring on the substrate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Acharya KP, Skuza JR, Lukaszew RA, Liyanage C, Ullrich B (2007) CdS thin films formed on flexible plastic substrates by pulsed-laser deposition. J Phys Condens Matter 19:196221

    Article  Google Scholar 

  • Álvarez-Ruiz J, López-Arias M, de Nalda R, Martín M, Arregui A, Bañares L (2009) Generation of CdS clusters using laser ablation: the role of wavelength and fluence. Appl Phys A 95:681–687

    Article  Google Scholar 

  • Ashfold MNR, Claeyssens F, Fuge GM, Henley S (2004) Pulsed laser ablation and deposition of thin films. Chem Soc Rev 33:23–31

    Article  CAS  Google Scholar 

  • Bakke JR, Jung HJ, Tanskanen T, Sonclair R, Bent SF (2010) Atomic layer deposition of CdS films. Chem Mater 22:4669–4678

    Article  CAS  Google Scholar 

  • Banerjee R, Jayakrishnan R, Ayyub P (2000) Effect of the size-induced structural transformation on the band gap in CdS nanoparticles. J Phys Condens Matter 12:10647–10654

    Article  CAS  Google Scholar 

  • Bekefi G (1976) Principle of laser plasmas. Wiley, New York

    Google Scholar 

  • Berger LI, Pamplin BP (1993) Properties of semiconductors. In: Weast RC (ed) Handbook of chemistry and physics, 73rd edn. CRC Press, Boca Raton

    Google Scholar 

  • Caifeng W, Qingshan L, Bo H, Weibing L (2010) White light photoluminescence from ZnS films on porous Si substrates. J Semicond 31:033002

    Article  Google Scholar 

  • Chrisey DB, Huber GK (eds) (1994) Pulsed laser deposition of thin films. Wiley, New York

    Google Scholar 

  • Chung JK, Kim WJ, Kim SS, Song TK, Park SY, Lee TK, Kim CJ (2010) The epitaxial growth and optical properties of ZnS thin films deposited by pulsed laser deposition. Phys Scr T139:014018

    Article  Google Scholar 

  • de Nalda R, López-Arias M, Sanz M, Oujja M, Castillejo M (2011) Harmonic generation in ablation plasmas of wide bandgap semiconductors. Phys Chem Chem Phys 13:10755–10761

    Article  Google Scholar 

  • Dimitrijevic MS, Sahal-Bréchot S (1999) Stark broadening of neutral zinc spectral lines. Astron Astrophys Suppl Ser 140:193–196

    Article  CAS  Google Scholar 

  • Eason R (ed) (2006) Pulsed laser deposition of thin films: applications-led growth of functional materials. Wiley, New York

    Google Scholar 

  • El Deeb AF (2007) Structural and optical characteristics of CdS thin films deposited by infrared pulsed-laser technique. Eur Phys J Appl Phys 38:247–252

    Article  CAS  Google Scholar 

  • Ezumi H, Keitoku S (1993) Influence of pulse width on CdS film prepared by YAG laser ablation. Jpn J Appl Phys 32:1783–1786

    Article  CAS  Google Scholar 

  • Fang X, Bando Y, Golberg D (2008) Recent progress in one-dimensional ZnS nanostructures: syntheses and novel properties. J Mater Sci Technol 24:512–519

    CAS  Google Scholar 

  • Griem HR (1964) Plasma spectroscopy. McGrawn-Hill Book Company, New York

    Google Scholar 

  • Hillie KT, Curren C, Swart HC (2001) ZnS thin films grown on Si(100) by XeCl pulsed laser ablation. Appl Surf Sci 177:73–77

    Article  CAS  Google Scholar 

  • Huddlestone RH, Leonard SL (1965) Plasma diagnosis techniques. Academic Press, New York/London

    Google Scholar 

  • Hullavarad NV, Hullavarad SS, Karulkar PC (2008) Cadmium sulphide (CdS) nanotechnology: synthesis and applications. J Nanosci Nanotechnol 8:3272–3299

    Article  CAS  Google Scholar 

  • Jandeleit J, Urbasch G, Hoffmann H, Treusch HG, Kreutz E (1997) Picosecond laser ablation of thin copper films. Appl Phys A 63:117–121

    Article  Google Scholar 

  • Kelly R, Miotello A (1996) Comments on explosive mechanisms of laser sputtering. Appl Surf Sci 96–98:205–215

    Article  Google Scholar 

  • Klini A, Manousaki A, Anglos D, Fotakis C (2005) Growth of ZnO thin films by ultraviolet pulsed-laser ablation: study of plume dynamics. J Appl Phys 98:123301

    Article  Google Scholar 

  • Leung KM, Tang CC, Deshazer LG (1976) Laser damage of CdS and ZnS thin films. Thin Solid Film 34:119–123

    Article  CAS  Google Scholar 

  • Lewis LJ, Perez D (2009) Laser ablation with short and ultrashort laser pulses: basic mechanisms from molecular-dynamics simulations. Appl Surf Sci 255:5101–5106

    Article  CAS  Google Scholar 

  • Mahdavi SM, Iraji zad A, Tilaki RM (2005) The effect of target annealing temperature on optical and structural properties and composition of CdS thin films prepared by pulsed laser. Opt Mater 27:1583

    Article  CAS  Google Scholar 

  • McLaughlin M, Sakeek HF, Maguire P, Graham WG, Molloy J, Morrow T, Laverty S, Anderson J (1993) Properties of ZnS thin films prepared by 248-nm pulsed laser deposition. Appl Phys Lett 63:1865–1867

    Article  CAS  Google Scholar 

  • NIST Atomic Spectra Database. http://physics.nist.gov

  • Palik ED (ed) (1997) Handbook of optical constants of solids. Academic Press, New York

    Google Scholar 

  • Perna G, Capozzi V, Ambrico M, Augelli V, Lingonzo T, Minafra A, Schiavulli L, Pallara M (2004) Structural and optical characterization of undoped and indium-doped CdS films grown by pulsed laser deposition. Thin Solid Films 453–254:187–194

    Article  Google Scholar 

  • Sanz M, Walczak M, Oujja M, Cuesta A, Castillejo M (2009) Nanosecond pulsed laser deposition of TiO2: nanostructure and morphology of deposits and plasma diagnosis. Thin Solid Films 517:6546–6552

    Article  CAS  Google Scholar 

  • Sanz M, de Nalda R, Marco JF, Izquierdo JG, Bañares L, Castillejo M (2010) Femtosecond pulsed laser deposition of nanostructured CdS films. J Phys Chem C 114:4864–4868

    Article  CAS  Google Scholar 

  • Sanz M, López-Arias M, Marco JF, de Nalda R, Amoruso S, Ausanio G, Lettieri S, Bruzzese R, Wang X, Castillejo M (2011) Ultrafast laser ablation and deposition of wide band gap semiconductors. J Phys Chem C 115:3203–3211

    Article  CAS  Google Scholar 

  • Shaikh NM, Hafeez S, Baig MA (2007) Comparison of zinc and cadmium plasma parameters produced by laser-ablation. Spectrochim Acta Part B 62:1311–1320

    Article  Google Scholar 

  • Simic Z, Dimitrijevic MS, Milovanovic N, Sahal-Bréchot S (2005) Stark broadening of Cd I spectral lines. Astron Astrophys 441:391–393

    Article  CAS  Google Scholar 

  • Singh KR, Bhattacharya D, Narayan J (1990) Subsurface heating effects during pulsed laser evaporation of materials. Appl Phys Lett 57:2022–2024

    Article  CAS  Google Scholar 

  • Tahashi K, Yoshikawa A, Sandhu A (eds) (2007) Wide bandgap semiconductors: fundamental properties and modern photonic and electronic devices. Springer-Verlag, Berlin

    Google Scholar 

  • Tong XL, Jiang DS, Li Y, Liu ZM, Luo MZ (2006) The influence of the silicon substrate temperature on structural and optical properties of thin-film cadmium sulfide formed with femtosecond laser deposition. Phys B 382:105–109

    Article  CAS  Google Scholar 

  • Tong XL, Jiang DS, Liu L, Liu ZM, Luo MZ (2007) Effect of the laser fluence on structural and optical characterization of thin CdS films synthesized by femtosecond pulsed laser. Opt Comm 270:356–360

    Article  CAS  Google Scholar 

  • Tong XL, Jiang DS, Liu ZM, Luo MZ, Li Y, Lu PX, Yang G, Long H (2008) Structural characterization of CdS thin film on quartz formed by femtosecond pulsed laser deposition at high temperature. Thin Solid Films 516:2003–2008

    Article  CAS  Google Scholar 

  • Ullrich B, Yano S, Schroeder R, Sakai H (2003) Analysis of single- and two-photon-excited green emission spectra of thin-film cadmium sulphide. J Appl Phys 93:1914–1917

    Article  CAS  Google Scholar 

  • Vigil-Galán O, Vidal-Larramendi J, Escamilla-Esquivel A, Contreras-Puentel G, Cruz-Gandarilla F, Arriaga-Mejía G, Chavarría-Castañeda M, Tufiño-Velázquez M (2006) Physical properties of CdS thin films grown by pulsed laser ablation on conducting substrates: effect of the thermal treatment. Phys Stat Sol A 203:2018

    Article  Google Scholar 

  • Walczak M, Oujja M, Marco JF, Sanz M, Castillejo M (2008) Pulsed laser deposition of TiO2: diagnostic of the plume and characterization of nanostructured deposits. Appl Phys A 93:735–740

    Article  CAS  Google Scholar 

  • Xin ZJ, Peaty RJ, Rutt HN, Eason RW (1999) Epitaxial growth of high-quality ZnS films on sapphire and silicon by pulsed laser deposition. Semicond Sci Technol 14:695–698

    Article  CAS  Google Scholar 

  • Yano S, Schroeder R, Sakai H, Ullrich B (2003) Absorption and photocurrent properties of thin ZnS films formed by pulsed-laser deposition on quartz. Thin Solid Films 423:273–276

    Article  CAS  Google Scholar 

  • Yoo YZ, Osaka Y, Fukumura T, Jin Zhengwu, Kawasaki M, Koinuma H, Chikyow T, Ahmet P, Setoguchi A, Chichibu SF (2001) High temperature growth of ZnS films on bare Si and transformation of ZnS to ZnO by thermal oxidation. Appl Phys Lett 78:616–618

    Article  CAS  Google Scholar 

  • Zhai T, Fang X, Li L, Bando Y, Golberg D (2010) One-dimensional CdS nanostructures: synthesis, properties, and applications. Nanoscale 2:168–187

    Article  CAS  Google Scholar 

  • Zhao L, Lian J, Liu Y, Jiang Q (2006) Structural and optical properties of ZnO thin films deposited on quartz glass by pulsed laser deposition. Appl Surf Sci 252:8451–8455

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Funding from MEC, Spain (Projects CTQ2007-60177 and CTQ2010-15680) is gratefully acknowledged. MS, ML-A and ER thank CAM (Geomateriales P2009/MAT 1629), CSIC (JAE-Pre) and MICINN (Juan de la Cierva programme) for contracts. We are grateful to Prof. T. Ezquerra (IEM, CSIC) for the use of the AFM system, D. Gómez (ICTP, CSIC) for operating the ESEM and I. Carabias (CAI de Difracción de Rayos X, UCM) for XRD measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Sanz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sanz, M., López-Arias, M., Rebollar, E. et al. Laser ablation and deposition of wide bandgap semiconductors: plasma and nanostructure of deposits diagnosis. J Nanopart Res 13, 6621–6631 (2011). https://doi.org/10.1007/s11051-011-0570-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11051-011-0570-1

Keywords

Navigation