Skip to main content
Log in

Microwave-assisted rapid synthesis of Pt/graphene nanosheet composites and their application for methanol oxidation

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Polymer-free Pt/graphene nanosheet (GN) composites have been rapidly prepared by a one-step microwave-assisted reduction method, carried out by ethylene glycol reduction of H2PtCl6 in a graphene oxide suspension. Several analytic techniques including UV–vis spectroscopy, Raman spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy, and transmission electron microscopy have been used to characterize the resulting Pt/GN composites. It suggests that such composites exhibit good catalytic activity toward methanol oxidation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Akhavan O (2010) Graphene nanomesh by ZnO nanorod photocatalysts. ACS Nano 4:4174–4180. doi:10.1021/nn1007429

    Article  CAS  Google Scholar 

  • Allen MJ, Tung VC, Kaner RB (2010) Honeycomb carbon: a review of graphene. Chem Rev 110:132–145. doi:10.1021/cr900070d

    Article  CAS  Google Scholar 

  • Bong S, Kim YR, Kim I, Woo S, Uhm S, Lee J, Kim H (2009) Graphene supported electrocatalysts for methanol oxidation. Electrochem Commun 12:129–131. doi:10.1016/j.elecom.2009.11.005

    Article  Google Scholar 

  • Chen A, Holt-Hindle P (2010) Platinum-based nanostructured materials: synthesis, properties, and applications. Chem Rev 110:3767–3804. doi:10.1021/cr9003902

    Article  CAS  Google Scholar 

  • Chen D, Tang L, Li J (2010a) Graphene-based materials in electrochemistry. Chem Soc Rev 39:3157–3180. doi:10.1039/b923596e

    Article  CAS  Google Scholar 

  • Chen W, Yan L, Bangal PR (2010b) Preparation of graphene by the rapid and mild thermal reduction of graphene oxide induced by microwaves. Carbon 48:1146. doi:10.1016/j.carbon.2009.11.037

    Article  CAS  Google Scholar 

  • Dong L, Gari RRS, Li Z, Craig MM, Hou S (2010) Graphene-supported platinum and platinum–ruthenium nanoparticles with high electrocatalytic activity for methanol and ethanol oxidation. Carbon 48:781–787. doi:10.1016/j.carbon.2009.10.027

    Article  CAS  Google Scholar 

  • Geim AK, Novoselov KS (2007) The rise of graphene. Nat Mater 6:183–191. doi:10.1038/nmat1849

    Article  CAS  Google Scholar 

  • Graf D, Molitor F, Ensslin K, Stampfer C, Jungen A, Hierold C, Wirtz L (2007) Spatially resolved Raman spectroscopy of single- and few-layer graphene. Nano Lett 7:238–242. doi:10.1021/nl061702a

    Article  CAS  Google Scholar 

  • Guo S, Dong S, Wang E (2009) Polyaniline/Pt hybrid nanofibers: high-efficiency nanoelectrocatalysts for electrochemical devices. Small 5:1869–1876. doi:10.1002/smll.200900190

    Article  CAS  Google Scholar 

  • Guo S, Dong S, Wang E (2010a) Three-dimensional Pt-on-Pd bimetallic nanodendrites supported on graphene nanosheet: facile synthesis and used as an advanced nanoelectrocatalyst for methanol oxidation. ACS Nano 4:547–555. doi:10.1021/nn9014483

    Article  CAS  Google Scholar 

  • Guo S, Dong S, Wang E (2010b) Constructing carbon nanotube/Pt nanoparticle hybrids using an imidazolium-salt-based ionic liquid as a linker. Adv Mater 22:1269–1272. doi:10.1002/adma.200903379

    Article  CAS  Google Scholar 

  • Guo S, Wen D, Zhai Y, Dong S, Wang E (2010c) Platinum nanoparticle ensemble-on-graphene hybrid nanosheet: one-pot, rapid synthesis, and used as new electrode material for electrochemical sensing. ACS Nano 4:3959–3968. doi:10.1021/nn100852h

    Article  CAS  Google Scholar 

  • Hassan HMA, Abdelsayed V, Khder AERS, AbouZeid KM, Terner J, El-Shall MS, Al-Resayes SI, El-Azhary AA (2009) Microwave synthesis of graphene sheets supporting metal nanocrystals in aqueous and organic media. J Mater Chem 19:3832–3837. doi:10.1039/b906253j

    Article  CAS  Google Scholar 

  • Hummers WS Jr, Offeman R (1958) Preparation of graphitic oxide. J Am Chem Soc 80:1339. doi:10.1021/ja01539a017

    Article  CAS  Google Scholar 

  • Jafri RI, Rajalakshmi N, Ramaprabhu S (2010) Nitrogen doped graphene nanoplatelets as catalyst support for oxygen reduction reaction in proton exchange membrane fuel cell. J Mater Chem 20:7114–7117. doi:10.1039/c0jm00467g

    Article  Google Scholar 

  • Janowska I, Chizari K, Ersen O, Zafeiratos S, Soubane D, Costa VD, Speisser V, Boeglin C, Houllé M, Bégin D, Plee D, Ledoux MJ, Pham-Huu C (2010) Microwave synthesis of large few-layer graphene sheets in aqueous solution of ammonia. Nano Res 3:126–137. doi:10.1007/s12274-010-1017-1

    Article  CAS  Google Scholar 

  • Jasuja K, Linn J, Meltion S, Berry V (2010) Microwave-reduced uncapped metal nanoparticles on graphene: tuning catalytic, electrical, and raman properties. J Phys Chem Lett 1:1853–1860. doi:10.1021/jz100580x

    Article  CAS  Google Scholar 

  • Kamat PV (2010) Graphene-based nanoarchitectures. Anchoring semiconductor and metal nanoparticles on a two-dimensional carbon support. J Phys Chem Lett 1:520–527. doi:10.1021/jz900265j

    Article  CAS  Google Scholar 

  • Kou R, Shao Y, Wang D, Engelhard MH, Kwak JH, Wang J, Viswanathan VV, Wang C, Lin Y, Wang Y, Aksay IA, Liu J (2009) Enhanced activity and stability of Pt catalysts on functionalized graphene sheets for electrocatalytic oxygen reduction. Electrochem Commun 11:954–957. doi:10.1016/j.elecom.2009.02.033

    Article  CAS  Google Scholar 

  • Li Y, Tang L, Li J (2009) Preparation and electrochemical performance for methanol oxidation of Pt graphene nanocomposites. Electrochem Commun 11:846–849. doi:10.1016/j.elecom.2009.02.009

    Article  Google Scholar 

  • Li F, Chai J, Yang H, Han D, Niu L (2010a) Synthesis of Pt/ionic liquid/graphene nanocomposite and its simultaneous determination of ascorbic acid and dopamine. Talanta 81:1063–1068. doi:10.1016/j.talanta.2010.01.061

    Article  CAS  Google Scholar 

  • Li Y, Gao W, Ci L, Wang C, Ajayan PM (2010b) Catalytic performance of Pt nanoparticles on reduced graphene oxide for methanol electro-oxidation. Carbon 48:1124–1130. doi:10.1016/j.carbon.2009.11.034

    Article  CAS  Google Scholar 

  • Li Z, Yao Y, Lin Z, Moon KS, Lin W, Wong C (2010c) Ultrafast, dry microwave synthesis of graphene sheets. J Mater Chem 20:4781–4783. doi:10.1039/c0jm00168f

    Article  CAS  Google Scholar 

  • Liu S, Tian J, Wang L, Li H, Zhang Y, Sun X (2010a) Stable aqueous dispersion of graphene nanosheets: noncovalent functionalization by a polymeric reducing agent and their subsequent decoration with Ag nanoparticles for enzymeless hydrogen peroxide detection. Macromolecules 43:10078–10083. doi:10.1021/ma102230m

    Article  CAS  Google Scholar 

  • Liu S, Wang J, Zeng J, Ou J, Li Z, Liu X, Yang S (2010b) “Green” electrochemical synthesis of Pt/graphene sheet nanocomposite film and its electrocatalytic property. J Power Sources 195:4628–4633. doi:10.1016/j.jpowsour.2010.02.024

    Article  CAS  Google Scholar 

  • Liu S, Tian J, Wang L, Sun X (2011) A method for the production of reduced graphene oxide using benzylamine as a reducing and stabilizing agent and its subsequent decoration with Ag nanoparticles for enzymeless hydrogen peroxide detection. Carbon 49:3158–3164. doi:10.1016/j.carbon.2011.03.036

  • Liu S, Tian J, Wang L, Sun X (2011) Microwave-assisted rapid synthesis of Ag nanoparticles/graphene nanosheet composites and their application for hydrogen peroxide detection. J Nanopart Res. doi:10.1007/s11051-011-0410-3

  • Murugan AV, Muraliganth T, Manthiram A (2009) Rapid, facile microwave-solvothermal synthesis of graphene nanosheets and their polyaniline nanocomposites for energy strorage. Chem Mater 21:5004–5006. doi:10.1021/cm902413c

    Article  CAS  Google Scholar 

  • Muszynski R, Seger B, Kamat PV (2008) Decorating graphene sheets with gold nanoparticles. J Phys Chem C 112:5263–5266. doi:10.1021/jp800977b

    Article  CAS  Google Scholar 

  • Novoselov KS, Geim SV, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field effect in atomically thin carbon films. Science 306:666–669. doi:10.1126/science.1102896

    Article  CAS  Google Scholar 

  • Park S, An J, Piner RD, Jung I, Yang D, Velamakanni A, Nguyen ST, Ruoff RS (2008) Aqueous suspension and characterization of chemically modified graphene sheets. Chem Mater 20:6592–6594. doi:10.1021/cm801932u

    Article  CAS  Google Scholar 

  • Rao CNR, Sood AK, Subrahmanyam KS, Govindaraj A (2009) Graphene: the new two-dimensional nanomaterial. Angew Chem Int Ed 48:7752–7777. doi:10.1002/anie.200901678

    Article  CAS  Google Scholar 

  • Seger B, Kamat PV (2009) Electrocatalytically active graphene-platinum nanocomposites. Role of 2-D carbon support in PEM fuel cells. J Phys Chem C 113:7990–7995. doi:10.1021/jp900360k

    Article  CAS  Google Scholar 

  • Shao Y, Zhang S, Wang C, Nie Z, Liu J, Wang Y, Lin Y (2010) Highly durable graphene nanoplatelets supported Pt nanocatalysts for oxygen reduction. J Power Sources 195:4600–4605. doi:10.1016/j.jpowsour.2010.02.044

    Article  CAS  Google Scholar 

  • Si Y, Samulski ET (2008) Exfoliated graphene separated by platinum nanoparticles. Chem Mater 20:6792–6797. doi:10.1021/cm801356a

    Article  CAS  Google Scholar 

  • Stankovich S, Dikin DA, Dommett GHB, Kohlhaas KM, Zimney EJ, Stach EA, Piner RD, Nguyen ST, Ruoff RS (2006) Graphene-based composite materials. Nature 442:282–286. doi:10.1038/nature04969

    Article  CAS  Google Scholar 

  • Stankovich S, Dikin DA, Piner RD, Kohlhaas KM, Kleinhammes A, Jia Y, Nguyen ST, Ruoff RS (2007) Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45:1558–1565. doi:10.1016/j.carbon.2007.02.034

    Article  CAS  Google Scholar 

  • Sundaram RS, Gómez-Navarro C, Balasubramanian K, Burghard M, Kern K (2008) Electrochemical modification of graphene. Adv Mater 20:3050–3053. doi:10.1002/adma.200800198

    Article  CAS  Google Scholar 

  • Tung VC, Allen MJ, Yang Y, Kaner RB (2009) High-throughput solution processing of large-scale graphene. Nat Nanotechnol 4:25–29. doi:10.1038/NNANO.2008.329

    Article  CAS  Google Scholar 

  • Wei T, Fan Z, Luo G, Zheng C, Xie D (2008) A rapid and efficient method to prepare exfoliated graphite by microwave irradiation. Carbon 47:337–339. doi:10.1016/j.carbon.2008.10.013

    Article  Google Scholar 

  • Wu H, Wang J, Kang X, Wang C, Wang D, Liu Aksay IA, Lin Y (2009) Glucose biosensor based on immobilization of glucose oxidase in platinum nanoparticles/graphene/chitosan nanocomposite film. Talanta 80:403–406. doi:10.1016/j.talanta.2009.06.054

    Article  CAS  Google Scholar 

  • Xu C, Wang X, Zhu J (2008) Graphene-metal particle nanocomposites. J Phys Chem C 112:19841–19845. doi:10.1021/jp807989b

    Article  CAS  Google Scholar 

  • Yoo E, Okata T, Akita T, Kohyama M, Nakamura J, Honma I (2009) Enhanced electrocatalytic activity of Pt subnanoclusters on graphene nanosheet surface. Nano Lett 9:225–229. doi:10.1021/nl900397t

    Article  Google Scholar 

  • Zhang Y, Tan YW, Stormer HL, Kim P (2005) Experimental observation of the quantum Hall effect and Berry’s phase in graphene. Nature 438:201–204. doi:10.1038/nature04235

    Article  CAS  Google Scholar 

  • Zhang M, Lei D, Yin X, Chen L, Li Q, Wang Y, Wang T (2010) Magnetite/graphene composites: microwave irradiation synthesis and enhanced cycling and rate performances for lithium ion batteries. J Mater Chem 20:5538–5543. doi:10.1039/c0jm00638f

    Article  CAS  Google Scholar 

  • Zhou YG, Chen JJ, Wang FB, Sheng ZH, Xia XH (2010) A facile approach to the synthesis of highly electroactive Pt nanoparticles on graphene as an anode catalyst for direct methanol fuel cells. Chem Commun 46:5951–5953. doi:10.1039/c0cc00394h

    Article  CAS  Google Scholar 

  • Zhu C, Guo S, Zhai Y, Dong S (2010a) Layer-by-layer self-assembly for constructing a graphene/platinum nanoparticle three-dimensional hybrid nanostructure using ionic liquid as a linker. Langmuir 26:7614–7618. doi:10.1021/la904201j

    Article  CAS  Google Scholar 

  • Zhu Y, Murali S, Stoller MD, Velamakanni A, Piner RD, Ruoff RS (2010b) Microwave assisted exfoliation and reduction of graphite oxide for ultracapacitors. Carbon 48:2106–2122. doi:10.1016/j.carbon.2010.02.001

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuping Sun.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, S., Wang, L., Tian, J. et al. Microwave-assisted rapid synthesis of Pt/graphene nanosheet composites and their application for methanol oxidation. J Nanopart Res 13, 4731–4737 (2011). https://doi.org/10.1007/s11051-011-0440-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11051-011-0440-x

Keywords

Navigation