Skip to main content
Log in

InAs quantum dots on different Ga(In)As surrounding material investigated by photoreflectance and photoluminescence spectroscopy: electronic energy levels and carrier’s dynamic

  • Special Issue: Nanostructured Materials 2010
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

In this article, comprehensive combination of photomodulated optical spectroscopy (PR) and temperature-dependent photoluminescence (PL) is carried out to investigate the electronic energy levels and carrier dynamics in nanometers’ size InAs quantum dots (QDs) in different surrounding material. Depending on the temperature range, the integrated PL intensity as a function of temperature, correlated to a rate equation model reveals two thermal escape channels for the InAs QDs in a pure GaAs matrix and three thermal escape channels for InAs/InGaAs dots-in-a-well structure. The extraction of the electronic energy levels by room temperature PR allow analyzing the impact of the surrounding material composition on the thermal activation energies and resulting PL quenching process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Bimberg D (2005) Quantum dots for lasers, amplifiers and computing. J Phys D 38:2055–2058

    Article  CAS  Google Scholar 

  • Chen R, Liu HY, Sun HD (2010) Electronic energy levels and carrier dynamics in InAs/InGaAs dots-in-a-well structure investigated by optical spectroscopy. J Appl Phys 107:013513–013517

    Article  Google Scholar 

  • Chouaib H, Chauvin N, Bru-Chevallier C, Monat C, Regreny P, Gendry M (2006) Photoreflectance spectroscopy of self-organized InAs/InP(0 0 1) quantum sticks emitting at 1.55 μm. Appl Surf Sci 253:90–94

    Article  CAS  Google Scholar 

  • Guffarth F, Heitz R, Schliwa A, Stier O, Ledentsov NN, Kovsh AR, Ustinov VM, Bimberg D (2001) Strain engineering of self-organized InAs quantum dots. Phys Rev B 64:085305–085311

    Article  Google Scholar 

  • Hjiri M, Hassen F, Maaref H (2000) Optical characterization of self organized InAs/GaAs quantum dots grown by MBE. Mater Sci Eng B 74:253–258

    Article  Google Scholar 

  • Ilahi B, Sfaxi L, Hassen F, Maaref H, Salem B, Guillot G, Jbeli A, Marie X (2005) Optical properties of 1.3 μm room temperature emitting InAs quantum dots covered by In0.4Ga0.6As/GaAs hetero-capping layer. Appl Phys A 81:813–816

    Article  CAS  Google Scholar 

  • Ilahi B, Sfaxi L, Maaref H (2007) Optical investigation of InGaAs-capped InAs quantum dots: Impact of the strain-driven phase separation and dependence upon post-growth thermal treatment. J Lumin 27:741–746

    Article  Google Scholar 

  • Kong L, Wu Z, Feng ZC, Ferguson IT (2007) Photoluminescence characteristics of InAs self-assembled quantum dots in InGaAs/GaAs quantum well. J Appl Phys 101:126101–126103

    Article  Google Scholar 

  • Lipsanen H, Sopanen M, Ahopelto J (1995) Luminescence from excited states in strain-induced InxGa1-xAs quantum dots. Phys Rev B 51:13868–13871

    Article  CAS  Google Scholar 

  • Lobo C, Leon R, Marcinkevicius S, Yang W, Sercel PC, Liao XZ, Zou J, Cockayne DJH (1999) Inhibited carrier transfer in ensembles of isolated quantum dots. Phys Rev B 60:16647–16651

    Article  CAS  Google Scholar 

  • Maximov MV, Tsatsul’nikov AF, Volovik BV, Sizov DS, Shernyakov YM, Kaiander IN, Zhukov AE, Kovsh AR, Mikhrin SS, Ustinov VM, Alferov ZhI, Heitz R, Shchukin VA, Ledentsov NN, Bimberg D, Musikhin YuG, Neumann W (2000) Tuning quantum dot properties by activated phase separation of an InGa(Al)as alloy grown on InAs stressors. Phys Rev B 62:16671–16680

    Article  CAS  Google Scholar 

  • Popescu DP, Eliseev PG, Stintz A, Malloy KJ (2004) Temperature dependence of the photoluminescence emission from InAs quantum dots in a strained Ga0.85In0.15As quantum well. Semicond Sci Technol 19:33–38

    Article  CAS  Google Scholar 

  • See AM, Klochan O, Hamilton AR, Micolich AP, Aagesen M, Lindelof PE (2010) AlGaAs/GaAs single electron transistor fabricated without modulation doping. Appl Phys Lett 96:112104–112106

    Article  Google Scholar 

  • Sek G, Poloczek P, Ryczko K, Misiewicz J, Löffler A, Reithmaier JP, Forchel A (2006) Photoreflectance determination of the wetting layer thickness in the In x Ga1−x As/GaAs quantum dot system for a broad indium content range of 0.3–1. J Appl Phys 100:103529–103533

    Article  Google Scholar 

  • Sek G, Ryczko K, Motyka M, Andrzejewski J, Wysocka K, Misiewicz J, Li LH, Fiore A, Patriarche G (2007) Wetting layer states of InAs/GaAs self-assembled quantum dot structures: effect of intermixing and capping layer. J Appl Phys 101:063539–063545

    Article  Google Scholar 

  • Sellers IR, Mowbray DJ, Badcock TJ, Wells JPR, Phillips PJ, Carderd DA, Liu HY, Groom KM, Hopkinson M (2006) Infrared modulated interlevel spectroscopy of 1.3 μm self-assembled quantum dot lasers using a free electron laser. Appl Phys Lett 88:081108–081110

    Article  Google Scholar 

  • Torchynska TV, Espinola JL, Borkovska LV, Ostapenko S, Dybiec M, Polupan O, Korsunska NO, Stintz A, Eliseev PG, Malloy KJ (2007) Thermal activation of excitons in asymmetric InAs dots-in-a-well In x Ga1−x As/GaAs structures. J Appl Phys 101:024323–024331

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Ilahi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hadj Alouane, M.H., Ilahi, B., Sfaxi, L. et al. InAs quantum dots on different Ga(In)As surrounding material investigated by photoreflectance and photoluminescence spectroscopy: electronic energy levels and carrier’s dynamic. J Nanopart Res 13, 5809–5813 (2011). https://doi.org/10.1007/s11051-011-0349-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11051-011-0349-4

Keywords

Navigation