Skip to main content

Advertisement

Log in

Improved model for fullerene C60 solubility in organic solvents based on quantum-chemical and topological descriptors

  • Research paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Fullerenes are sparingly soluble in many solvents. The dependence of fullerene’s solubility on molecular structure of the solvent must be understood in order to manage efficiently this class of compounds. To find such dependency ab initio quantum-chemical calculations in combination with quantitative structure–property relationship (QSPR) tool were used to model the solubility of fullerene C60 in 122 organic solvents. A genetic algorithm and multiple regression analysis (GA-MLRA) were applied to generate correlation models. The best performance is accomplished by the four-variable MLRA model with prediction coefficient r 2test  = 0.903. This study reveals a correlation of highest occupied molecular orbital energy (HOMO), certain heteroatom fragments, and geometrical parameters with solubility. Several other important parameters of solvents that affect the C60 solubility have been also evaluated by the QSPR analysis. The employed GA-MLRA approach enhanced by application of quantum-chemical calculations yields reliable results, allowing one to build simple, interpretable models that can be used for predictions of C60 solubility in various organic solvents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abraham MH, Green CE, Acree WE (2000) Correlation and prediction of the solubility of Buckminsterfullerene in organic solvents; estimation of some physicochemical properties. J Chem Soc Perkin Trans 2:281–286

    Google Scholar 

  • Antipin IS, Arslanov NA, Palyulin VA, Konovalov AI, Zefirov NS (1991) Solvation topological index. Topological description of dispersion interaction (in Russian). Dokl Akad Nauk SSSR 316:925–927 (Chem Abstr 115, 91390)

    CAS  Google Scholar 

  • Balaban AT (1983) Topological indexes based on topological distances in molecular graphs. Pure Appl Chem 55:199–206

    Article  CAS  Google Scholar 

  • Beck MT, Mandi G (1997) Solubility of C60. Fuller Sci Technol 5:291–310

    CAS  Google Scholar 

  • Becke AD (1993) Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  • Cook SM, Aker WG, Rasulev BF, Hwang H-M, Leszczynski J, Jenkins JJ, Shockley V (2010) Choosing safe dispersing media for C60 fullerenes by using cytotoxicity tests on the bacterium Escherichia coli. J Hazard Mater 176:367–373

    Article  CAS  Google Scholar 

  • Davis L (1991) Handbook of genetic algorithms. Van Nostrand Reinhold, New York, USA

    Google Scholar 

  • de Oliveira DB, Gaudio AC (2001) BuildQSAR: a new computer program for QSAR analysis. Quant Struct Act Relat 19:599–601

    Article  Google Scholar 

  • Devillers J (1996) Genetic algorithms in molecular modeling. Academic Press Ltd, London

    Google Scholar 

  • Duchowicz PR, Talevi A, Bruno-Blanch LE, Castro EA (2008) New QSPR study for the prediction of aqueous solubility of drug-like compounds. Bioorg Med Chem 16:7944–7955

    Article  CAS  Google Scholar 

  • Estrada E, Gutman I (1996) A topological index based on distances of edges of molecular graphs. J Chem Inf Comp Sci 36:850–853

    CAS  Google Scholar 

  • Foresman JB, Frisch A (2000) Exploring chemistry with electronic structure methods. Gaussian, Inc., Pittsburgh

    Google Scholar 

  • Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR et al (2004) Gaussian 03, Revision C.02. Gaussian, Inc., Wallingford

    Google Scholar 

  • Hansen CM, Smith AL (2004) Using Hansen solubility parameters to correlate solubility of C60 fullerene in organic solvents and in polymers. Carbon 42:1591–1597

    Article  CAS  Google Scholar 

  • Hehre WJ, Radom L, Schleyer P, Pople JA (1986) Ab initio molecular orbital theory. Wiley, New York

    Google Scholar 

  • Herbst MH, Dias GHM, Magalhaes JG, Torres RB, Volpe PLO (2005) Enthalpy of solution of fullerene [60] in some aromatic solvents. J Mol Liq 118:9–13

    Article  CAS  Google Scholar 

  • Katritzky AR, Lobanov VS, Karelson M (1994) Comprehensive descriptors for structural and statistical analysis. Version 2.0. Semichem, Inc., Gainesville (reference manual)

    Google Scholar 

  • Katritzky AR, Lobanov VS, Karelson M (1995) Chem Soc Rev 24:279–287

    Article  CAS  Google Scholar 

  • Kiss IZ, Mandi G, Beck MT (2000) Artificial neural network approach to predict the solubility of C60 in various solvents. J Phys Chem A 104:8081–8088

    Article  CAS  Google Scholar 

  • Korobov MV, Smith AL (2000) Solubility of the fullerenes. In: Kadish KM, Ruoff RS (eds) Fullerenes: chemistry, physics, and technology. John Wiley and Sons Inc, New York, pp 53–90

    Google Scholar 

  • Liu H, Yao X, Zhang R, Liu M, Hu Z, Fan B (2005) Accurate quantitative structure-property relationship model to predict the solubility of C60 in various solvents based on a novel approach using a least-squares support vector machine. J Phys Chem B 109:20565–20571

    Article  CAS  Google Scholar 

  • Marcus Y (1997) Solubilities of buckminsterfullerene and sulfur hexafluoride in various solvents. J Phys Chem 101:8617–8623

    CAS  Google Scholar 

  • Marcus Y, Smith AL, Korobov MV, Mirakyan NV, Avramenko NV, Stukalin EB (2001) Solubility of C60 fullerene. J Phys Chem B 105:2499–2506

    Article  CAS  Google Scholar 

  • Mohar B (1989) Laplacian matrices of graphs. In: Graovac A (ed) MATH/CHEM/COMP 1988. Studies in physical and theoretical chemistry, vol 63, Elsevier, Amsterdam, pp 1–8

  • Randic M, Krilov G (1999) On a characterization of the folding of proteins. Int J Quantum Chem 75:1017–1026

    Article  CAS  Google Scholar 

  • Randic M, Kleiner AF, De Alba LM (1994) Distance/distance matrices. J Chem Inf Comp Sci 34:277–286

    CAS  Google Scholar 

  • Ruoff RS, Tse DS, Malhotra R, Lorents DC (1993) Solubility of fullerene (C60) in a variety of solvents. J Phys Chem 97:3379–3383

    Article  CAS  Google Scholar 

  • Simon J (1987) Molecular graphs as topological objects in space. J Comp Chem 8:718–726

    Article  CAS  Google Scholar 

  • Sivaraman N, Dhamodaran R, Kaliappan I, Srinivasan TG, Rao PRV, Mathews CK (1992) Solubility of C60 in organic solvents. J Org Chem 57:6077–6079

    Article  CAS  Google Scholar 

  • Sivaraman N, Dhamodaran R, Kaliappan I, Srinivasan TG, Rao PRV, Mathews CK (1994) Solubility of C60 and C70 in organic solvents. In: Kadish KM, Ruoff RS (eds) Recent advances in the chemistry and physics of fullerenes and related materials. The Electrochemical Society, Pennington, pp 156–165

    Google Scholar 

  • Smith AL, Wilson LY, Famini GR (1996) A quantitative structure-property relationship study of C60 solubility. In: Recent advances in the chemistry and physics of fullerenes and related materials, vol 3. Proceedings of Electrochemical Society, Philadelphia, pp 53–62

  • Stukalin EB, Korobov MV, Avramenko NV (2003) Solvation free energies of the fullerenes C60 and C70 in the framework of polarizable continuum model. J Phys Chem B 107:9692–9700

    Article  CAS  Google Scholar 

  • Todeschini R, Consonni V (2000) Handbook of molecular descriptors. Wiley-VCH, Weinheim

    Book  Google Scholar 

  • Todeschini R, Consonni V (2003) DRAGON software for the calculation of molecular descriptors Version 3.0

  • Toropov AA, Leszczynska D, Leszczynski J (2007a) QSPR study on solubility of fullerene C60 in organic solvents using optimal descriptors calculated with SMILES. Chem Phys Lett 441:119–122

    Article  CAS  Google Scholar 

  • Toropov AA, Leszczynska D, Leszczynski J (2007b) Predicting water solubility and octanol water partition coefficient for carbon nanotubes based on the chiral vector. Comput Biol Chem 31:127–128

    Article  CAS  Google Scholar 

  • Toropov AA, Rasulev BF, Leszczynska D, Leszczynski J (2007c) Additive SMILES based optimal descriptors: QSPR modeling of fullerene C60 solubility in organic solvents. Chem Phys Lett 444:209–214

    Article  CAS  Google Scholar 

  • Toropov AA, Rasulev BF, Leszczynska D, Leszczynski J (2008) Multiplicative SMILES-based optimal descriptors: QSPR modeling of fullerene C60 solubility in organic solvents. Chem Phys Lett 457:332–336

    Article  CAS  Google Scholar 

  • Toropov AA, Toropova AP, Benfenati E, Leszczynska D, Leszczynski J (2009) Additive InChI-based optimal descriptors: QSPR modeling of fullerene C60 solubility in organic solvents. J Math Chem 46(4):1232–1251

    Article  CAS  Google Scholar 

  • Vanin AA, Piotrovskaya EM, Piotrovsky LB (2008) Investigation of fullerene solutions by molecular dynamics method. Fuller Nanotub Car N 16(5–6):555–562

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank for support the National Science Foundation for the “Interdisciplinary Center for Nanotoxicity” support—NSF HRD #0833178; for NSF EPSCoR Grant no. 362492-190200-01\NSFEPS-0903787 and Department of Defense through the U. S. Army Engineer Research and Development Center (Vicksburg, MS) for the grant “Development of Predictive Techniques for Modeling Properties of NanoMaterials Using New OSPR/QSAR Approach Based on Optimal NanoDescriptors”—Contract #W912HZ-06-C-0061. The authors are grateful to the Mississippi Center for Supercomputing Research (MCSR) for providing state-of-the-arts high performance computing facilities and excellent services for supporting this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bakhtiyor F. Rasulev.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 336 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Petrova, T., Rasulev, B.F., Toropov, A.A. et al. Improved model for fullerene C60 solubility in organic solvents based on quantum-chemical and topological descriptors. J Nanopart Res 13, 3235–3247 (2011). https://doi.org/10.1007/s11051-011-0238-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11051-011-0238-x

Keywords

Navigation