Skip to main content
Log in

One-pot biosynthesis of polymer–inorganic nanocomposites

  • Research paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

A biological method is demonstrated to fabricate the polymer–inorganic nanocomposites (PINCs) utilizing bacterium as an efficient and versatile biofactory. Gluconacetobacter xylinum that can produce bacterial cellulose is incubated in the culture medium containing titanium or silica precursor. The PINCs can be acquired under the elaborate control of the culturing condition of G. xylinum, in which the formation of inorganic nanoparticles about several tens of nanometers in size synchronizes the fabrication of reticulated bacterial cellulose membrane composed of dense and finely branched nanofibers about 60–120 nm in diameter. The composition and chemical states, morphology, thermal stability of the inorganic nanoparticles, and nanocomposites were extensively characterized. A tentative mechanism for the formation of PINCs is proposed. It is hoped that this study may establish a generic platform toward facile and green synthesis of nanocomposite materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Ahmad A, Mukerjee P, Mandal D, Senapati S, Khan MI, Kumar R, Sastry M (2002) Enzyme mediated extracellular synthesis of CdS nanoparticles by the fungus, Fusarium oxysporum. J Am Chem Soc 124:12108–12109

    Article  CAS  Google Scholar 

  • Ahmad A, Senapati S, Khan MI, Kumar R, Ramani R, Srinivas V, Sastry M (2003) Intracellular synthesis of gold nanoparticles by a novel alkalotolerant actinomycete, Rhodococcus species. Nanotechnology 14:824–828

    Article  CAS  Google Scholar 

  • Balazs AC, Emrick T, Russell TP (2006) Nanoparticle polymer composites: where two small worlds meet. Science 314:1107–1110

    Article  CAS  Google Scholar 

  • Bansal V, Rautaray D, Ahmad A, Sastry M (2004) Biosynthesis of zirconia nanoparticles using the fungus Fusarium oxysporum. J Mater Chem 14:3303–3305

    Article  CAS  Google Scholar 

  • Bansal V, Rautaray D, Bharde A, Ahire K, Sanyal A, Ahmad A, Sastry M (2005a) Fungus-medicated biosynthesis of silica and titania particles. J Mater Chem 15:2583–2589

    Article  CAS  Google Scholar 

  • Bansal V, Sanyal A, Rautaray D, Ahmad A, Sastry M (2005b) Bioleaching of sand by the fungus Fusarium oxysporum as a means of producing extracellular silica nanoparticles. Adv Mater 17:889–892

    Article  CAS  Google Scholar 

  • Bansal V, Poddar P, Ahmad A, Sastry M (2006) Room-temperature biosynthesis of ferroelectric barium titanate nanoparticles. J Am Chem Soc 128:11958–11963

    Article  CAS  Google Scholar 

  • Coker VS, Telling ND, van der Laan G, Pattrick RAD, Pearec CI, Arenholz E, Tuna F, Winpenny REP, Lloyd JR (2009) Harnessing the extracellular bacterial production of nanoscale cobalt ferrite with exploitable magnetic properties. ACS Nano 3:1922–1928

    Article  CAS  Google Scholar 

  • Crookes-Goodson WJ, Slocik JM, Naik RR (2008) Bio-directed synthesis and assembly of nanomaterials. Chem Soc Rev 37:2403–2412

    Article  CAS  Google Scholar 

  • Dahl JA, Maddux BLS, Hutchison JE (2007) Toward greener nanosynthesis. Chem Rev 107:2228–2269

    Article  CAS  Google Scholar 

  • De Santa Maria LCS, Santos ALC, Oliveira PC, Barud HS, Messaddeq Y, Ribeiro SJL (2009) Synthesis and characterization of silver nanoparticles impregnated into bacterial cellulose. Mater Lett 63:797–799

    Article  Google Scholar 

  • Eisenstein M (2005) Bacteria find work as amateur chemists. Nat Methods 2:6–7

    Article  CAS  Google Scholar 

  • Evans BR, O’Neill HM, Malyvanh VP, Lee I, Woodward J (2003) Palladium-bacterial cellulose membranes for fuel cells. Biosens Bioelectron 18:917–923

    Article  CAS  Google Scholar 

  • Focher B, Palma MT, Canetti M, Torri G, Cosentino C, Gastaldi G (2001) Structural differences between non-wood plant celluloses evidence from solid state NMR, vibrational spectroscopy and X-ray diffractometry. Ind Crop Prod 13:193–208

    Article  CAS  Google Scholar 

  • Jiang Y, Yang D, Zhang L, Sun Q, Sun X, Li J, Jiang Z (2009) Preparation of protamine-titania microcapsules through synergy between layer-by-layer assembly and biomimetic mineralization. Adv Funct Mater 19:150–156

    Article  CAS  Google Scholar 

  • Klaus T, Joerger R, Olsson E, Granqvist CG (1999) Silver-based crystalline nanoparticles, microbially fabricated. Proc Natl Acad Sci USA 6:13611–13614

    Article  Google Scholar 

  • Klemm D, Schumann D, Udhardt U, March S (2001) Bacterial synthesized cellulose-artificial blood vessels for microsurgery. Prog Polym Sci 26:1561–1603

    Article  CAS  Google Scholar 

  • Klemm D, Heublein B, Fink H, Bohn N (2005) Cellulose: fascinating biopolymer and sustainable raw material. Angew Chem Int Ed 44:3358–3393

    Article  CAS  Google Scholar 

  • Konishi Y, Ohno K, Saitoh N, Nomura T, Nagamine S, Hishida H, Takahashi Y, Uruga T (2007) Bioreductive deposition of platinum nanoparticles on the bacterium Shewanella algae. J Biotechnol 128:648–653

    Article  CAS  Google Scholar 

  • Korbekandi H, Iravani S, Abbasi S (2009) Production of nanoparticles using organisms. Crit Rev Biotechnol 29:279–306

    Article  CAS  Google Scholar 

  • Kowshik M, Vogel W, Urban J, Kulkarni SK, Paknikar KM (2002) Microbial synthesis of semiconductor PbS nanocrystallites. Adv Mater 14:815–818

    Article  CAS  Google Scholar 

  • Labrenz M, Drischel GK, Thomsen-Ebert T, Gilbert G, Welch SA, Kemner KM, Logan GA, Summons RE, Stasio GD, Bond PL, Lai B, Kelly SD, Banfield JF (2000) Formation of sphalerite (ZnS) deposits in natural biofilms of sulfate-reducing bacteria. Science 290:1744–1747

    Article  CAS  Google Scholar 

  • Li X, Chen S, Hu W, Shi S, Shen W, Zhang X, Wang H (2009) In situ synthesis of CdS nanoparticles on bacterial cellulose nanofibers. Carbohydr Polym 76:509–512

    Article  Google Scholar 

  • Lu FH, Chen HY (1999) XPS analyses of TiN films on Cu substrates after annealing in the controlled atmosphere. Thin Solid Films 355–356:374–379

    Article  Google Scholar 

  • Mukherjee P, Ahmad A, Mandal D, Senapati S, Sainkar SR, Khan MI, Parishcha R, Ajaykumar PV, Alan M, Kumar R, Sastry M (2001a) Fungus-medicated synthesis of silver nanoparticles and their immobilization in the mycelial matrix: a novel biological approach to nanoparticle synthesis. Nano Lett 1:515–519

    Article  CAS  Google Scholar 

  • Mukherjee P, Ahmad A, Mandal D, Senapati S, Sainkar SR, Khan MI, Ranani R, Parischa R, Ajayakumar PV, Alam M, Sastry M, Kumar R (2001b) Bioreduction of AuCl4 ions by the fungus Verticillium sp. and surface trapping of the gold nanoparticles formed. Angew Chem Int Ed 40:3585–3588

    Article  CAS  Google Scholar 

  • Nogi M, Yano H (2008) Transparent nanocomposites based on cellulose produced by bacteria offer potential innovation in the electronics device industry. Adv Mater 20:1849–1852

    Article  CAS  Google Scholar 

  • Park WI, Kim HS, Kwon SM, Hong YH, Jin HJ (2009) Synthesis of bacterial celluloses in multiwalled carbon nanotube-dispersed medium. Carbohydr Polym 77:457–463

    Article  CAS  Google Scholar 

  • Philipse AP, Mass D (2002) Magnetic colloids from magnetotactic bacteria: chain formation and colloidal stability. Langmuir 18:9977–9984

    Article  CAS  Google Scholar 

  • Poliakoff M, Licence P (2007) Sustainable technology: green chemistry. Nature 450:810–812

    Article  CAS  Google Scholar 

  • Pommet M, Juntaro J, Heng JYY, Mantalaris A, Lee AF, Wilson K, Kalinka G, Shaffer MSP, Bismarck A (2008) Surface modification of natural fibers using bacteria: depositing bacterial cellulose natural fibers to create hierarchical fiber reinforced nanocomposites. Biomacromolecules 9:1643–1651

    Article  CAS  Google Scholar 

  • Ray SS, Bousmina M (2005) Biodegradable polymers and their layered silicate nanocomposites: in greening the 21st century materials world. Prog Mater Sci 50:962–1079

    Article  CAS  Google Scholar 

  • Reith F, Etschmann B, Grosse C, Moors H, Benotmane MA, Monsieurs P, Grass G, Doonan C, Vogt S, Lai B, Martinez-Criado G, George GN, Nies DH, Mergeay M, Pring A, Southam G, Brugger J (2009) Mechanisms of gold biomineralization in the bacterium Cupriavidus metallidurans. Proc Natl Acad Sci USA 106:17757–17762

    Article  CAS  Google Scholar 

  • Rittigstein P, Priestley RD, Broadbelt LJ, Torkelson JM (2007) Model polymer nanocomposites provide an understanding of confinement effects in real nanocomposites. Nat Mater 6:278–282

    Article  CAS  Google Scholar 

  • Sanchez C, Julián B, Belleville P, Popall M (2005) Applications of hybrid organic-inorganic nanocomposites. J Mater Chem 15:3559–3592

    Article  CAS  Google Scholar 

  • Stern R, Jedrzejas MJ (2008) Carbohydrate polymers at the center of life’ origins: the importance of molecular processivity. Chem Rev 108:5061–5086

    Article  CAS  Google Scholar 

  • Sun D, Yang J, Wang X (2010) Bacterial cellulose/TiO2 hybrid nanofibers prepared by the surface hydrolysis method with molecular precision. Nanoscale 2:287–292

    Article  CAS  Google Scholar 

  • Wang Y, Wang T, Su Y, Peng F, Wu H, Jiang Z (2005) Remarkable reduction of irreversible fouling and improvement of the permeation properties of poly(ether sulfone) ultrafiltration membranes by blending with Pluronic F127. Langmuir 21:11856–11862

    Article  CAS  Google Scholar 

  • Xie J, Lee JY, Wang DIC, Ting YP (2007) Silver nanoplates: from biological to biomimetic synthesis. ACS Nano 1:429–439

    Article  CAS  Google Scholar 

  • Yano S, Maeda H, Nakajima M, Hagiwara T, Sawaguchi T (2008) Preparation and mechanical properties of bacterial cellulose nanocomposites loaded with silica nanoparticles. Cellulose 15:111–120

    Article  CAS  Google Scholar 

  • Yong P, Rowsen NA, Farr JPG, Harris IR, Macaskie LE (2002) Bioreduction and biocrystalization of palladium by Desulfovibrio desulfuricans NCIMB 8307. Biotechnol Bioeng 80:369–379

    Article  CAS  Google Scholar 

  • Yu JG, Yu HG, Cheng B, Zhao XJ, Yu JC, Ho WK (2003) The effect of calcination temperature on the surface microstructure and photocatalytic activity of TiO2 thin films prepared by liquid phase deposition. J Phys Chem B 107:13871–13879

    Article  CAS  Google Scholar 

  • Zhang D, Qi L (2005) Synthesis of mesoporous titania networks consisting of anatase nanowires by templating of bacterial cellulose membranes. Chem Commun 21:2735–2737

    Article  Google Scholar 

  • Zhang T, Wang W, Zhang D, Zhang X, Ma Y, Zhou Y, Qi L (2010) Biotemplated synthesis of gold nanoparticle-bacteria cellulose nanofiber nanocomposites and their application in biosensing. Adv Funct Mater 20:1152–1160

    Article  CAS  Google Scholar 

  • Zou H, Wu S, Shen J (2008) Polymer/silica nanocomposites: preparation, characterization, properties, and applications. Chem Rev 108:3893–3957

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research is supported by the National Basic Research Program of China (2009CB724700), the Tianjin Natural Science Foundation (No. 08JCYBJC01700), the National Special Fund for State Key Laboratory of Bioreactor Engineering (No. 2060204), the Program for Changjiang Scholars and Innovative Research Team in University from the Ministry of Education of China, and the Program of Introducing Talents of Discipline to Universities (No: B06006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhongyi Jiang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Geng, J., Yang, D., Zhu, Y. et al. One-pot biosynthesis of polymer–inorganic nanocomposites. J Nanopart Res 13, 2661–2670 (2011). https://doi.org/10.1007/s11051-010-0159-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11051-010-0159-0

Keywords

Navigation