Skip to main content
Log in

Superparamagnetic nickel nanoparticles obtained by an organometallic approach

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Nickel nanoparticles were prepared by decomposition of the organometallic precursor Ni(COD)2 (COD=cycloocta-1,5-diene) dissolved in organic media in the presence of anthranilic acid as stabilizer. Transmission electron microscopy revealed nickel nanoparticles with a mean size of 4.2 ± 1.1 nm and selected area electron diffraction showed the formation of fcc nickel. FTIR spectroscopy confirmed the presence of modified anthranilic acid on the surface of the Ni nanoparticles suggesting that it is able to interact with the metal particles. The magnetic response of the nanoparticles was established as being of superparmagnetic character, for which a detailed quantitative analysis resulted in a mean magnetic moment of 2652 μB per particle together with a blocking temperature of 32 K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Bahlawane N, Premkumar PA, Tian Z, Hong X, Qi F, Kohse-Höinghaus K (2010) Nickel and nickel-based nanoalloy thin films from alcohol-assisted chemical vapor deposition. Chem Mater 22:92–100

    Article  CAS  Google Scholar 

  • Bai L, Yuan F, Tang Q (2008) Synthesis of nickel nanoparticles with uniform size via a modified hydrazine reduction route. Mater Lett 62:2267–2270

    Article  CAS  Google Scholar 

  • Borowski AF, Rajca I (1984) Structure and Properties of Anthranilato- and N-henylanthranilatorhodium (I) Complexes with cis-cycloocta-l, 5-diene. Trans Met Chem 9:109–112

    Article  CAS  Google Scholar 

  • Bradley JS, Hill EW, Behal S, Klein C, Chaudret B, Duteil A (1992) Preparation and characterization of organosols of monodispersed nanoscale palladium. Particle size effects in the binding geometry of adsorbed carbon monoxide. Chem Mater 4:1234–1239

    Article  CAS  Google Scholar 

  • Bradley JS, Tesche B, Busser W, Maase M, Reetz MTJ (2000) Surface spectroscopic study of the stabilization mechanism for shape-selectively synthesized nanostructured transition metal colloids. Am Chem Soc 122:4631–4636

    Article  CAS  Google Scholar 

  • Branch CS, Lewinski J, Justyniak I, Bott SG, Lipkowski J, Barron AR (2001) Aluminum and gallium compounds of salicylic and anthranilic acids: examples of weak intra-molecular hydrogen bonding. Dalton Trans 1253–1258

  • Caravan P, Ellison JJ, McMurry TJ, Lauffer RB (1999) Gadolinium(III) chelates as MRI contrast agents: structure, dynamics, and applications. Chem Rev 99:2293–2352

    Article  CAS  Google Scholar 

  • Carenco S, Boissière C, Nicole L, Sanchez C, Le Floch P, Mézailles N (2010) Controlled design of tuneable monodisperse nickel nanoparticles. Chem Mater 22:1340–1349

    Article  CAS  Google Scholar 

  • Chakroune N, Viau G, Ricolleau C, Fievet-Vincent F, Fievet F (2003) Cobalt-based anisotropic particles prepared by the polyol process. J Mater Chem 13:312–318

    Article  CAS  Google Scholar 

  • Chaudret B (2005) Organometallic approach to nanoparticles synthesis and self-organization. C R Phys 6:117–131

    Article  CAS  Google Scholar 

  • Che SL, Takada K, Takashima K, Sakurai O, Shinazaki K, Mizutani N (1999) Preparation of dense spherical Ni particles and hollow NiO particles by spray pyrolysis. J Mater Sci 6:1313–1318

    Article  Google Scholar 

  • Chen DH, Wu SH (2000) Synthesis of nickel nanoparticles in water-in-oil microemulsions. Chem Mater 12:1354–1360

    Article  CAS  Google Scholar 

  • Chow GM, Ding J, Zhang J, Lee KY, Surani D, Lawrence SH (1999) Magnetic and hardness properties f nanostructured Ni–C films deposited by a non-aqueous electroless method. Appl Phys Lett 74:1889–1891

    Article  CAS  Google Scholar 

  • Cordente N, Respaud M, Senocq F, Casonove MJ, Amiens C, Chaudret B (2001) Synthesis and magnetic properties of nickel nanorods. Nano Lett 1:565–568

    Article  CAS  Google Scholar 

  • Davar F, Fereshteh Z, Salavati-Niasari M (2009) Nanoparticles Ni and NiO: synthesis, characterization and magnetic properties. J Alloy Compd 476:797–801

    Article  CAS  Google Scholar 

  • De Caro D, Bradley JS (1997) Surface spectroscopic study of carbon monoxide adsorption on nanoscale nickel colloids prepared from a zerovalent organometallic precursor. Langmuir 13:3067–3069

    Article  Google Scholar 

  • Dominguez-Crespo MA, Ramírez-Meneses E, Montiel-Palma V, Torres Huerta AM, Dorantes Rosales H (2009) Synthesis and electrochemical characterization of stabilized nickel nanoparticles. Int J Hydrogen Energy 34:1664–1676

    Google Scholar 

  • Durán Pachón L, Thathagar MB, Hartl F, Rothenberg G (2006) Palladium-coated nickel nanoclusters: new Hiyama cross-coupling catalysts. Phys Chem Chem Phys 8:151–157

    Article  Google Scholar 

  • Duteil A, Quéau R, Chaudret B, Mazel R, Roucau C, Bradley JS (1993) Preparation of organic solutions or solid films of small particles of ruthenium, palladium, and platinum from organometallic precursors in the presence of cellulose derivatives. Chem Mater 5:341–347

    Article  CAS  Google Scholar 

  • Ely TO, Amiens C, Chaudret B, Snoeck E, Verelst M, Respaud M, Broto JM (1999) Synthesis of nickel nanoparticles. Influence of aggregation induced by modification of poly(vinylpyrrolidone) chain length on their magnetic properties. Chem Mater 11:526–529

    Article  CAS  Google Scholar 

  • Ferrari EF, da Silva FCS, Knobel M (1997) Influence of the distribution of magnetic moments on the magnetization and magnetoresistance in granular alloys. Phys Rev B 56:6086–6093

    Article  CAS  Google Scholar 

  • Gong J, Wang LL, Liu Y, Yang JH, Zong ZG (2008) Structural and magnetic properties of hcp and fcc Ni nanoparticles. J Alloys Compd 457:6–9

    Article  CAS  Google Scholar 

  • Green M, O’Brien P (2001) The preparation of organically functionalised chromium and nickel nanoparticles. Chem Commun 1912–1913

  • He Y, Li X, Swihart MT (2005) Laser-driven aerosol synthesis of nickel nanoparticles. Chem Mater 17:1017–1026

    Article  CAS  Google Scholar 

  • Hou Y, Gao S (2003) Monodisperse nickel nanoparticles prepared from a monosurfactant system and their magnetic properties. J Mater Chem 13:1510–1512

    Article  CAS  Google Scholar 

  • Hyungsoo C, Sungho P, Tae Hyung K (2003) Novel nickel precursors for chemical vapor deposition. Chem Mater 15:3735–3738

    Article  Google Scholar 

  • Kronmüller H, Fähnle M (2003) Micromagnetism and the microstructure of ferromagnetic solids. Cambridge University Press, Cambridge

    Google Scholar 

  • Kurihara LK, Chow GM, Schoen PE (1995) Nanocrystalline metallic powders and films produced by the polyol method. Nanostruct Mater 5:607–613

    Article  CAS  Google Scholar 

  • Lu A-H, Salabas EL, Schüth F (2007) Magnetische Nanopartikel: Synthese, Stabilisierung, Funktionalisierung und Anwendung. Angew Chem 46:1242–1266

    Article  Google Scholar 

  • Mandal M, Kundu S, Sau TK, Yusuf SM, Pal T (2003) Synthesis and characterization of superparamagnetic Ni–Pt nanoalloy. Chem Mater 15:3710–3715

    Article  CAS  Google Scholar 

  • Margeat O, Ciuculescu D, Lecante P, Respaud M, Amiens C, Chaudret B (2007) NiFe nanoparticles: a soft magnetic material? Small 3:451–458

    Article  CAS  Google Scholar 

  • Migowski P, Machado G, Texeira SG, Alves MCM, Morais J, Traverse A, Dupond J (2007) Synthesis and characterization of nickel nanoparticles dispersed in imidazolium ionic liquids. Phys Chem Chem Phys 9:4814–4821

    Article  CAS  Google Scholar 

  • Nakamoto K (1997) Infrared and Raman spectra of inorganic and coordination compounds, part B: applications in coordination organometallic and bioinorganic chemistry, 5th edn. Wiley, New York

    Google Scholar 

  • O’Grady K, White RL, Grundy PJ (1998) Whiter magnetic recording. J Magn Mater 177:886–891

    Article  Google Scholar 

  • Pang T, Meng GW, Fang Q, Zhang LD (2003) Silver nanowire array infrared polarizers. Nanotechnology 14:20–24

    Article  CAS  Google Scholar 

  • Park J, Kang E, Son SU, Park HM, Lee MK, Kim J, Kim KW, Noh HJ, Park JH, Bae CJ, Park J-G, Hyeon T (2005) Monodisperse nanoparticles of Ni and NiO: synthesis, characterization, self-assembled superlattices, and catalytic applications in the Suzuki coupling reaction. Adv Mater 17:429–434

    Article  CAS  Google Scholar 

  • Peng ZA, Peng X (2001) Mechanisms of the shape evolution of CdSe nanocrystals. J Am Chem Soc 123:1389–1395

    Article  CAS  Google Scholar 

  • Petit C, Taleb A, Pileni MP (1999) Cobalt nanosized particles organized in a 2D superlattice: synthesis, characterization, and magnetic properties. J Phys Chem B 103:1805–1810

    Article  CAS  Google Scholar 

  • Philippot K, Chaudret B (2007) Organometallic derived—I: metals, colloids, and nanoparticle. In: Dermot O’Hare (vol ed) Comprehensive organometallic chemistry III, vol 12. Elsevier, Amsterdam, pp 71–99

  • Pick S, Dreyssé H (2000) Tight-binding study of ammonia and hydrogen adsorption on magnetic cobalt systems. Surf Sci 460:153–161

    Article  CAS  Google Scholar 

  • Puntes VF, Krishnan KM, Alivisatos AP (2001) Colloidal nanocrystal shape and size control: the case of cobalt. Science 291:2115–2117

    Article  CAS  Google Scholar 

  • Ramesh S, Koltypin Y, Prozorov R, Gedanken A (1997) Sonochemical deposition and characterization of nanophasic amorphous nickel on silica microspheres. Chem Mater 9:546–551

    Article  CAS  Google Scholar 

  • Ramirez E, Eradès L, Philippot K, Lecante P, Chaudret B (2007) Shape control of platinum nanoparticles. J Adv Funct Mater 17:2219–2228

    Article  CAS  Google Scholar 

  • Respaud M, Broto JM, Rakoto H, Fert AR, Thomas L, Barbara B, Verelst M, Snoeck E, Lecante P, Mosset A, Osuna J, Ould Ely T, Amiens C, Chaudret B (1998) Surface effects on the magnetic properties of ultrafine cobalt particles. Phys Rev B 57:2925–2935

    Article  CAS  Google Scholar 

  • Rosenweig RE (1989) Magnetic fluids: phenomena and process applications. Chem Eng Prog 85:53–61

    Google Scholar 

  • Santini O, De Moraes AR, Mosca DH, De Souza PEN, De Oliveira AJA, Marangoni R, Wypych F (2005) Structural and magnetic properties of Fe and Co nanoparticles embedded in powdered Al2O3. J Colloid Interface Sci 289:63–70

    Article  CAS  Google Scholar 

  • Schaefer ZL, Ke X, Schiffer P, Schaak RE (2008) Direct solution synthesis, reaction pathway studies, and structural characterization of crystalline Ni3B nanoparticles. J Phys Chem C 112:19846–19851

    Article  CAS  Google Scholar 

  • Schmid G (1992) Large clusters and colloids. Metals in the embryonic state. Chem Rev 92:1709–1727

    Article  CAS  Google Scholar 

  • Sun S, Murray CB, Weller D, Folks L, Moser A (2000) Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices. Science 287:1989–1992

    Article  CAS  Google Scholar 

  • Thompson GB, Banerjee R, Zhang XD, Anderson PM, Fraser HL (2002) Chemical ordering and texture in sputter-deposited Ni3Al thin films. Acta Mater 50:643–651

    Article  CAS  Google Scholar 

  • Toneguzzo P, Viau G, Acher O, Guillet F, Bruneton E, Fievet-Vincent F, Fievet F (2000) CoNi and FeCoNi fine particles prepared by the polyol process: physico-chemical characterization and dynamic magnetic properties. J Mater Sci 35:3767–3784

    Article  CAS  Google Scholar 

  • Tzitzios V, Basina G, Gjoka M, Alexandrakis V, Goergakilas V, Niarchos D, Boukos N, Petridis D (2006) Chemical synthesis and characterization of hcp Ni nanoparticles. Nanotechnology 17:3750–3755

    Article  CAS  Google Scholar 

  • Wang ZL, Petrovski JM, Green TC, El-Sayed MA (1998) Shape transformation and surface melting of cubic and tetrahedral platinum nanocrystals. J Phys Chem B 102:6145–6151

    Article  CAS  Google Scholar 

  • Wang ZK, Kuok MH, Ng SC, Lockwood DJ, Cottam MG, Nielsch K, Wehrspohn RB, Gösele U (2002) Spin-wave quantization in ferromagnetic nickel nanowires. Phys Rev Lett 89:27201

    Article  CAS  Google Scholar 

  • Wiesbrock F, Schmidbaur H (2002) The structural chemistry of lithium, sodium and potassium anthranilate hydrates. Dalton Trans 4703–4708

  • Wu SH, Chen DH (2004) Synthesis and stabilization of Ni nanoparticles in a pure aqueous CTAB solution. Chem Lett 33:406

    Article  CAS  Google Scholar 

  • Xu W, Liew KY, Liu H, Huang T, Sun C, Zhao Y (2008) Microwave-assisted synthesis of nickel nanoparticles. Mater Lett 62:2571–2573

    Article  CAS  Google Scholar 

  • Yin H, Chow GM (2002) Anomalous electroless polyol deposition of FeNi powders and films. J Electrochem Soc 149:C68

    Article  CAS  Google Scholar 

  • Zabow G, Dodd S, Moreland J, Korestky A (2008) Micro-engineered local field control for high-sensitivity multispectral MRI. Nature 453:1058–1063

    Article  CAS  Google Scholar 

  • Zhang DE, Ni XM, Zhang HG, Li Y, Zhang XJ, Yang ZP (2005) Synthesis of needle-like nickel nanoparticles in water-in-oil microemulsion. Mater Lett 59:2011–2014

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We acknowledge financial support from CONACyT through 59921, 105762, SIP-IPN 2008-0838, and SIP-IPN 2009 projects and to Mr. Héctor Dorantes Rosales from ESIQIE-IPN for his valuable technical assistance for TEM analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Ramírez-Meneses.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ramírez-Meneses, E., Betancourt, I., Morales, F. et al. Superparamagnetic nickel nanoparticles obtained by an organometallic approach. J Nanopart Res 13, 365–374 (2011). https://doi.org/10.1007/s11051-010-0039-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11051-010-0039-7

Keywords

Navigation