Skip to main content
Log in

Evaluation of DNA damage and cytotoxicity of polyurethane-based nano- and microparticles as promising biomaterials for drug delivery systems

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

The in vitro cytotoxicity and DNA damage evaluation of biodegradable polyurethane-based micro- and nanoparticles were carried out on animal fibroblasts. For cytotoxicity measurement and primary DNA damage evaluation, MTT and Comet assays were used, respectively. Different formulations were tested to evaluate the influence of chemical composition and physicochemical characteristics of particles on cell toxicity. No inhibition of cells growth surrounding the polyurethane particles was observed. On the other hand, a decrease of cell viability was verified when the anionic surfactant sodium dodecyl sulfate (SDS) was used as droplets stabilizer of monomeric phase. Polyurethane nanoparticles stabilized with Tween 80 and Pluronic F68 caused minor cytotoxic effects. These results indicated that the surface charge plays an important role on cytotoxicity. Particles synthesized from MDI displayed a higher cytotoxicity than those synthesized from IPDI. Size and physicochemical properties of the particles may explain the higher degree of DNA damage produced by two tested formulations. In this way, a rational choice of particles’ constituents based on their cytotoxicity and genotoxicity could be very useful for conceiving biomaterials to be used as drug delivering systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Andriguetti-Fröhner CR, Antonio RV, Creczynski-Pasa TB et al (2003) Cytotoxicity and potential antiviral of violacein produced by Chromobacterium violaceum. Mem Inst Oswaldo Cruz 98:843–848. doi:10.1590/S0074-02762003000600023

    Google Scholar 

  • Do Luu HM, Hutter JC (2000) Pharmacokinetic modeling of 4, 4′-methylenedianiline released from reused polyurethane dialyzer potting materials. J Biomed Mater Res 53:276–286. doi:10.1002/(SICI)1097-4636(2000)53:3<276:AID-JBM13>3.0.CO;2-E

    Article  CAS  PubMed  Google Scholar 

  • Durrieu V, Gandini A, Belgacem MN et al (2004) Preparation of aqueous anionic poly-(urethane-urea) dispersions: influence of the nature and proportion of the urethane groups on the dispersion and polymer properties. J Appl Polym Sci 94:700–710

    Article  CAS  Google Scholar 

  • Fontana G, Licciardi M, Mansueto S et al (2001) Amoxicilin-loaded polyethylcyanoacrylate nanoparticles: influence of PEG coating on the particle size, drug release rate and phagocytic uptake. Biomaterials 22:2857–2865. doi:10.1016/S0142-9612(01)00030-8

    Article  CAS  PubMed  Google Scholar 

  • Gref R, Domb A, Quellec P et al (1995) The controlled intravenous delivery of drugs using PEG-coated sterically stabilized nanospheres. Adv Drug Deliv Rev 16:215–233. doi:10.1016/0169-409X(95)00026-4

    Article  CAS  Google Scholar 

  • Harush-Frenkel O, Debotton N, Benita S et al (2007) Targeting of nanoparticles to the clathrin-mediated endocytic pathway. Biochem Biophys Res Commun 353:26–32. doi:10.1016/j.bbrc.2006.11.135

    Article  CAS  PubMed  Google Scholar 

  • Horak D, Cervinka M, Puza V (1997) Hydrogels in endovascular embolization VI Toxicity tests of poly(2-hydroxyethyl methacrylate) particles on cell cultures. Biomaterials 18:1355–1359. doi:10.1016/S0142-9612(97)00059-8

    Article  CAS  PubMed  Google Scholar 

  • Jiang J, Oberdörster G, Biswas P (2008) Characterization of size, surface charge, and agglomeration state of nanoparticle dispersions for toxicological studies. J Nanopart Res 11:77–89. doi:10.1007/s11051-008-9446-4

    Article  Google Scholar 

  • Kim HW, Ahh EK, Jee BK et al (2009) Nanoparticulate-induced toxicity and related mechanism in vitro and in vivo. J Nanopart Res 11:55–65. doi:10.1007/s11051-008-9447-3

    Article  CAS  Google Scholar 

  • Kobayashi H, Sugiyama C, Morikawa Y et al (1995) A comparison between manual microscopic analysis and computarized image analysis in the single cell gel electrophoresis assay. MMS Commun 3:103–115

    CAS  Google Scholar 

  • Lelah MD, Cooper SL (1986) Polyurethanes in medicine. CRC Press, Boca Raton

    Google Scholar 

  • Lewinski N, Colvin V, Drezek R (2008) Cytotoxicity of nanoparticles. Small 4:26–49. doi:10.1002/smll.200700595

    Article  CAS  PubMed  Google Scholar 

  • Michel R, Pasche S, Textor M et al (2005) Influence of PEG architecture on protein adsorption and conformation. Langmuir 21:12327–12332. doi:10.1021/la051726h

    Article  CAS  PubMed  Google Scholar 

  • Midander K, Cronholm P, Karlsson HL et al (2009) Surface characteristics, copper release, and toxicity of nano- and micrometer-sized copper and copper(II) oxide particles: a cross-disciplinary study. Small 5:389–399. doi:10.1002/smll.200801220

    Article  CAS  PubMed  Google Scholar 

  • Mossmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65:55–63

    Article  Google Scholar 

  • Myamae Y, Yamamoto M, Sasaki YF et al (1998) Evaluation of a tissue homogenization that isolates nuclein for the in vivo single cell gel electrophoresis (Comet) assay: a collaborative study by five laboratories. Mutat Res 418:131–140

    Google Scholar 

  • Papageorgiou I, Brown C, Schins R et al (2007) The effect of nano- and micron-sized particles of cobalt-chromium alloy on human fibroblasts in vitro. Biomaterials 28:2946–2958. doi:10.1016/j.biomaterials.2007.02.034

    Article  CAS  PubMed  Google Scholar 

  • Sekihashi K, Saitoh H, Saga A (2003) Effect of in vitro exposure time on comet assay results. Environ Mutagen Res 25:83–86

    Article  CAS  Google Scholar 

  • Sieuwerts A, Klijn JGM, Peters HA et al (1995) The MTT tetrazolium salt assay scrutinized: how to use this assay reliably to measure metabolic activity of cell cultures in vitro for the assessment of growth characteristics, IC50-values and cell survival. Eur J Clin Chem Clin Biochem 33:813–823. doi:0099-2240/99/$04.0010

    CAS  PubMed  Google Scholar 

  • Simões SI, Tapadas JM, Marques CM et al (2005) Permeabilization and solubilization of soybean phosphatidylcholine bilayer vesicles, as membrane models, by polysorbate Tween 80. Eur J Pharm Sci 26:307–317

    Article  PubMed  Google Scholar 

  • Spiekstra SW, Dos Santos GG, Scheper RJ et al (2009) Potential method to determine irritant potency in vitro—comparison of two reconstructed epidermal culture models with different barrier competency. Toxicol In Vitro 23:349–355. doi:10.1016/j.tiv.2008.12.010

    Article  CAS  PubMed  Google Scholar 

  • Tice RR, Agurell E, Anderson D et al (2000) Single cell gel/Comet assay: guidelines for in vitro genetic toxicology testing. Environ Mol Mutagen 35:206–221

    Article  CAS  PubMed  Google Scholar 

  • Verma A, Uzun O, Hu Y et al (2008) Surface-structure-regulated cell-membrane penetration by monolayer-protected nanoparticles. Nat Mater 7:588–595. doi:10.1038/nmat2202

    Article  CAS  PubMed  ADS  Google Scholar 

  • Walum E, Strenberg K, Jenssen D (1990) Understanding cell toxicology: principles and practice. Ellis Howood, New York

    Google Scholar 

  • Yao C, Acosta D (1992) Surfactant cytotoxicity potential evaluated with primary cultures of ocular tissues: a method for the culture of rabbit conjunctival epithelial cells and initial cytotoxicity studies. Toxicol Mech Methods 2:199–218. doi:10.3109/15376519209066106

    Article  CAS  Google Scholar 

  • Yin H, Too HP, Chow GM (2005) The effects of particle size and surface coating on the cytotoxicity of nickel ferrite. Biomaterials 26:5818–5826. doi:10.1016/j.biomaterials.2005.02.036

    Article  CAS  PubMed  Google Scholar 

  • Zanetti-Ramos BG, Soldi V, Lemos-Senna E et al (2005) Use of natural monomer in the synthesis of nano- and microparticles of polyurethane by suspension-polyaddition technique. Macromol Symp 229:234–245. doi:10.1002/masy.200551129

    Article  CAS  Google Scholar 

  • Zanetti-Ramos BG, Lemos-Senna E, Soldi V et al (2006) Polyurethane nanoparticles from a natural polyol via miniemulsion technique. Polymer 47:8080–8087. doi:10.1016/j.msec.2007.04.041

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The Brazilian authors thank Capes/MEC and CNPq/MCT (Brazil) for their research fellowships.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cláudia Maria Oliveira Simões.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Caon, T., Zanetti-Ramos, B.G., Lemos-Senna, E. et al. Evaluation of DNA damage and cytotoxicity of polyurethane-based nano- and microparticles as promising biomaterials for drug delivery systems. J Nanopart Res 12, 1655–1665 (2010). https://doi.org/10.1007/s11051-009-9828-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11051-009-9828-2

Keywords

Navigation