Skip to main content
Log in

Copper sulfide nanotubes: facile, large-scale synthesis, and application in photodegradation

  • Brief Communication
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Large-scale synthesis of copper sulfide (CuS) nanotubes with uniform size could be achieved via a facile hydrothermal method. The whole process could be adjusted to prepare CuS with different nanostructures by simply changing the concentration of NaOH or reaction temperature while keeping other conditions unchanged. X-ray powder diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and Photoluminescence (PL) spectroscopy were used to characterize the products. The as-prepared CuS nanotubes showed good photocatalytic activity of degrading eosin Y under UV-vis light irradiation, which indicated the potential application of the CuS nanotubes in eliminating pollution and environmental protection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  • Cao MH, Hu CW, Wang YH et al (2003) A controllable synthetic route to Cu, Cu2O, and CuO nanotubes and nanorods. Chem Commun 1884–1885

  • Crespo O, Gimeno MC, Laguna A et al (2007) Highly luminescent gold(I)–silver(I) and gold(I)–copper(I) chalcogenide clusters. Chem Eur J 13:235–246

    Article  Google Scholar 

  • Dobley A, Ngala K, Yang SF et al (2001) Manganese vanadium oxide nanotubes: synthesis, characterization, and electrochemistry. Chem Mater 13:4382–4386

    Article  CAS  Google Scholar 

  • Dobson KD, Fisher IV, Hodes G, Cahen D (2001) Stabilizing CdTe/CdS solar cells with Cu-containing contacts to p-CdTe. Adv Mater 13:1495–1499

    Article  CAS  Google Scholar 

  • Fang YP, Xu AW, You LP et al (2003) Hydrothermal synthesis of rare earth (Tb, Y) hydroxide and oxide nanotubes. Adv Funct Mater 13:955–960

    Article  CAS  Google Scholar 

  • Fang Z, Tang KB, Gao LS et al (2006a) Oriented attachment growth of LaMn2O5+δ nanorods. Mater Lett 60:1347–1349

    Article  CAS  Google Scholar 

  • Fang Z, Tang KB, Shen GZ et al (2006b) Self-assembled ZnO 3D flowerlike nanostructures. Mater Lett 60:2530–2533

    Article  CAS  Google Scholar 

  • Gu F, Li CZ, Wang SF (2007) Solution-chemical synthesis of carbon nanotube/ZnS nanoparticle core/shell heterostructures. Inorg Chem 46:5343–5348

    Article  PubMed  CAS  Google Scholar 

  • Hu JQ, Bando Y, Zhan JH et al (2004) Sn-filled single-crystalline wurtzite-type ZnS nanotubes. Angew Chem Int Ed 43:4606–4609

    Article  CAS  Google Scholar 

  • Iijima S (1991) Carbon nanotubes. Nature 354:56–58

    Article  ADS  CAS  Google Scholar 

  • Journet C, Maser WK, Bernier P et al (1997) Large-scale production of single-walled carbon nanotubes by the electric-arc technique. Nature 388:756–758

    Article  CAS  Google Scholar 

  • Kalyanikutty KP, Nikhila M, Maitra U et al (2006) Hydrogel-assisted synthesis of nanotubes and nanorods of CdS, ZnS and CuS, showing some evidence for oriented attachment. Chem Phys Lett 432:190–194

    Article  ADS  CAS  Google Scholar 

  • Kempa K, Kimball B, Rybczynski J et al (2003) Photonic crystals based on periodic arrays of aligned carbon nanotubes. Nano Lett 3:13–18

    Article  CAS  Google Scholar 

  • Liang LF, Xu HF, Su Q et al (2004), Hydrothermal synthesis of prismatic NaHoF4 microtubes and NaSmF4 nanotubes. Inorg Chem 43:1594–1596

    Google Scholar 

  • Lu QY, Gao F, Zhao DY (2002) One-step synthesis and assembly of copper sulfide nanoparticles to nanowires, nanotubes, and nanovesicles by a simple organic amine-assisted hydrothermal process. Nano Lett 2:725–728

    Article  CAS  Google Scholar 

  • Muhr HJ, Krumeich F, Schönholzer UP et al (2000) Vanadium oxide nanotubes—a new flexible vanadate nanophase. Adv Mater 12:231–234

    Article  CAS  Google Scholar 

  • Ni Y, Liu H, Wang F et al (2004) Self-assembly of CuS nanoparticles to solid, hollow, spherical and tubular structures in a simple aqueous-phase reaction. Appl Phys A 79:2007–2011

    Article  ADS  CAS  Google Scholar 

  • Park TJ, Mao YB, Wong SS (2004) Synthesis and characterization of multiferroic BiFeO3 nanotubes. Chem Commun 2708–2709

  • Peralta-Inga Z, Lane P, Murray JS et al (2003) Characterization of surface electrostatic potentials of some (5, 5) and (n, 1) carbon and boron/nitrogen model nanotubes. Nano Lett 3:21–28

    Article  CAS  Google Scholar 

  • Sander MS, Gao H (2005) Aligned arrays of nanotubes and segmented nanotubes on substrates fabricated by electrodeposition onto nanorods. J Am Chem Soc 127:12158–12159

    Article  PubMed  CAS  Google Scholar 

  • Schlittler RR, Seo JW, Gimzewski JK et al (2001) Single crystals of single-walled carbon nanotubes formed by self-assembly. Science 292:1136–1139

    Article  PubMed  ADS  CAS  Google Scholar 

  • Shen GZ, Bando Y, Ye CH et al (2006) Single-crystal nanotubes of II3–V2 semiconductors. Angew Chem Int Ed 45:7568–7572

    Article  CAS  Google Scholar 

  • Souza Filho AG, Ferreira OP, Santos EJG et al (2004) Raman spectra in vanadate nanotubes revisited. Nano Lett 4:2099–2104

    Article  CAS  Google Scholar 

  • Sun YG, Xia YN (2004) Multiple-walled nanotubes made of metals. Adv Mater 16:264–268

    Article  CAS  Google Scholar 

  • Tan CH, Zhu YL, Lu R et al (2005) Synthesis of copper sulfide nanotube in the hydrogel system. Mater Chem Phys 91:44–47

    Article  CAS  Google Scholar 

  • Wu CY, Yu SH, Chen SF et al (2006) Large scale synthesis of uniform CuS nanotubes in ethylene glycol by a sacrificial templating method under mild conditions. J Mater Chem 16:3326–3311

    Article  CAS  Google Scholar 

  • Yan CL, Xue DF (2008) Formation of Nb2O5 nanotube arrays through phase transformation. Adv Mater 20:1055–1058

    Article  CAS  Google Scholar 

  • Yao ZY, Zhu X, Wu CZ et al (2007) Fabrication of micrometer-scaled hierarchical tubular structures of CuS assembled by nanoflake-built microspheres using an in situ formed Cu(I) complex as a self-sacrificed template. Cryst Growth Des 7:1256–1261

    Article  CAS  Google Scholar 

  • Yin LW, Bando Y, Zhan JH et al (2005) Self-assembled highly faceted Wurtizite-Type ZnS single-crystalline nanotubes with hexagonal cross-section. Adv Mater 17:1972–1977

    Article  CAS  Google Scholar 

  • Yu SF, Welp U, Hua LZ et al (2005) Fabrication of palladium nanotubes and their application in hydrogen sensing. Chem Mater 17:3445–3450

    Article  CAS  Google Scholar 

  • Yu XL, Cao CB, Zhu HS et al (2007) Nanometer-sized copper sulfide hollow spheres with strong optical-limiting properties. Adv Funct Mater 17:1397–1401

    Article  CAS  Google Scholar 

  • Zang WX, Wen XG, Yang SH et al (2003) Single-crystalline scroll-type nanotubes arrays of copper hydroxide synthesized at room temperature. Adv Mater 15:822–825

    Article  Google Scholar 

  • Zhan JH, Bando Y, Hu JQ et al (2004) Bulk synthesis of single-crystalline magnesium oxide nanotubes. Inorg Chem 43:2462–2464

    Article  PubMed  CAS  Google Scholar 

  • Zhang WX, Xu J, Yang ZH et al (2007) Mesoscale organization of Cu7S4 nanowires: formation of novel sheath-like nanotube array. Chem Phys Lett 434:256–259

    Article  ADS  CAS  Google Scholar 

  • Zhou J, Liu J, Wang XD et al (2007a) Vertically aligned Zn2SiO4 nanotube/ZnO nanowire heterojunction arrays. Small 4:622–626

    Article  Google Scholar 

  • Zhou Y, Kogiso M, He C et al (2007b) Fluorescent nanotubes consisting of CdS-embedded bilayer membranes of a peptide lipid. Adv Mater 19:1055–1058

    Article  CAS  Google Scholar 

  • Zhu Y, Guo XK, Jin JF et al (2007) Controllable synthesis of CuS nanotubes and nanobelts using lyotropic liquid crystal templates. J Mater Sci 42:1042–1045

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial supports from the National Natural Science Foundation of China (20701002), the Special Project Grants of Anhui Normal University (2007xzx12), Science and Technological Fund of Anhui Province for Outstanding Youth (08040106834), and the Education Department of Anhui Province (No. 2006KJ006TD) are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhen Fang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Xy., Fang, Z. & Lin, X. Copper sulfide nanotubes: facile, large-scale synthesis, and application in photodegradation. J Nanopart Res 11, 731–736 (2009). https://doi.org/10.1007/s11051-008-9480-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11051-008-9480-2

Keywords

Navigation