Skip to main content
Log in

Preparation of size-tunable, highly monodisperse PVP-protected Pt-nanoparticles by seed-mediated growth

  • Brief Communication
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

We demonstrate a preparative method which produces highly monodisperse Pt-nanoparticles of tunable size without the external addition of seed particles. Hexachloroplatinic acid is dosed slowly to an ethylene glycol solution at 120 °C and reduced in the presence of a stabilizing polymer poly-N-vinylpyrrolidone (PVP). Slow addition of the Pt-salt will first lead to the formation of nuclei (seeds) which then grow further to produce larger particles of any desired size between 3 and 8 nm. The amount of added hexachloroplatinic acid precursor controls the size of the final nanoparticle product. TEM was used to determine size and morphology and to confirm the crystalline nature of the nanoparticles. Good reproducibility of the technique was demonstrated. Above 7 nm, the particle shape and morphology changes suddenly indicating a change in the deposition selectivity of the Pt-precursor from (100) towards (111) crystal faces and breaking up of larger particles into smaller entities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  • Ahmadi TS, Wang ZL, Green TC, Henglein A, El-Sayed MA (1996) Shape-controlled synthesis of colloidal platinum nanoparticles. Science 272:1924–1925

    Article  CAS  Google Scholar 

  • Balzani V, Credi A, Venturi M (2002) The bottom-up approach to molecular-level devices and machines. Chem Eur J 8(24):5524–5532

    Article  CAS  Google Scholar 

  • Banerjee S, Dan A, Chakravorty D (2002) Synthesis of conducting nanowires. J Mater Sci 37(20):4261–4271

    Article  CAS  Google Scholar 

  • Caswell KK, Bender CM, Murphy CJ (2003) Seedless, surfactantless wet chemical synthesis of silver nanowires. Nano Lett 3(5):667–669

    Article  CAS  Google Scholar 

  • Dieringer JA, McFarland AD, Shah NC, Stuart DA, Whitney AV, Yonzon CR, Young MA, Zhang XY, Van Duyne RP (2006) Surface enhanced Raman spectroscopy: new materials, concepts, characterization tools, and applications. Faraday Discuss 132:9–26

    Article  CAS  Google Scholar 

  • Eppler AS, Zhu J, Anderson EA, Somorjai GA (2000) Model catalysts fabricated by electron beam lithography: AFM and TPD surface studies and hydrogenation/dehydrogenation of cyclohexene plus H2 on a Pt nanoparticle array supported by silica. Top Catal 13(1–2):33–41

    Article  CAS  Google Scholar 

  • Evanoff DD, Chumanov G (2004) Size-controlled synthesis of nanoparticles. 1. “Silver-only” aqueous suspensions via hydrogen reduction. J Phys Chem B 108(37):13948–13956

    Article  CAS  Google Scholar 

  • Hu X, Wang T, Dong S (2006) Rapid synthesis of cubic Pt nanoparticles, their use for the preparation of Pt nanoagglomerates. J Nanosci Nanotechnol 6(7):2056–2061

    Article  CAS  Google Scholar 

  • Humphrey SM, Grass ME, Habas SE, Niesz C, Somorjai GA, Tilley D (2007) Rhodium nanoparticles from cluster seeds: control of size and shape by precursor addition rate. Nano Lett 7(3):785–790

    Article  CAS  Google Scholar 

  • Jana NR, Gearheart L, Murphy CJ (2001) Evidence for seed-mediated nucleation in the chemical reduction of gold salts to gold nanoparticles. Chem Mater 13(7):2313–2322

    Article  CAS  Google Scholar 

  • Kuhn S, Hakanson U, Rogobete L, Sandoghdar V (2006) Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna. Phys Rev Lett 97(1), Art.#017402

  • Lin CS, Khan MR, Lin SD (2006) The preparation of Pt nanoparticles by methanol and citrate. J Colloid Interface Sci 299(2):678–685

    Article  CAS  Google Scholar 

  • Petroski JM, Wang ZL, Green TC, El-Sayed MA (1998) Kinetically controlled growth and shape formation mechanism of platinum nanoparticles. J Phys Chem B 102(18):3316–3320

    Article  CAS  Google Scholar 

  • Rioux RM, Song H, Hoefelmeyer JD, Yang P, Somorjai GA (2005) High-surface-area catalyst design: synthesis, characterization, and reaction studies of platinum nanoparticles in mesoporous SBA-15 silica. J Phys Chem B 109(6):2192–2202

    Article  CAS  Google Scholar 

  • Scott RWJ, Wilson OM, Crooks RM (2005) Synthesis, characterization, and applications of dendrimer-encapsulated nanoparticles. J Phys Chem B 109(2):692–704

    Article  CAS  Google Scholar 

  • Shenmar R, Norsten VB, Rotello VM (2005) Polymer-mediated nanoparticle assembly: structural control and applications. Adv Mater 17(6):657–669

    Article  Google Scholar 

  • Srnova-Sloufova I, Vlckova B, Bastl Z, Hasslett TL (2004) Bimetallic (Ag)Au nanoparticles prepared by the seed growth method: two-dimensional assembling, characterization by energy dispersive X-ray analysis, X-ray photoelectron spectroscopy, and surface enhanced Raman spectroscopy, and proposed mechanism of growth. Langmuir 20(8):3407–3415

    Article  CAS  Google Scholar 

  • Toshima N, Shiraishi Y, Teranishi T, Miyake M, Tominaga T, Watanabe H, Brijoux W, Bonnemann H, Schmid G (2001) Various ligand-stabilized metal nanoclusters as homogeneous and heterogeneous catalysts in the liquid phase. Appl Organometall Chem 15(3):178–196

    Article  CAS  Google Scholar 

  • Wang CG, Wang TT, Ma ZF, Su ZM (2005) pH-tuned synthesis of gold nanostructures from gold nanorods with different aspect ratios. Nanotechnology 16(11):2555–2560

    Article  CAS  Google Scholar 

  • Wikander K, Petit C, Holmberg K, Pileni MP (2006) Size control and growth process of alkylamine-stabilized platinum nanocrystals: a comparison between the phase transfer and reverse micelles methods. Langmuir 22(10):4863–4868

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Swiss National Science Foundation (SNF) and the Director, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geological and Biosciences of the U.S. Department of Energy under Contract DE-AC02=05CH11231. We would like to thank Dr. S. Brunner, Pitt Allmendinger and Manuel Hofer from the Zürich University of Applied Sciences, Winterthur for carrying out the reproducibility test experiment. We also thank Dr. Christian Soltmann for assistance with the CM30 Transmission Electron Microscope and Michael Foxe for support with the initial hydrogen reduction experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabor A. Somorjai.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koebel, M.M., Jones, L.C. & Somorjai, G.A. Preparation of size-tunable, highly monodisperse PVP-protected Pt-nanoparticles by seed-mediated growth. J Nanopart Res 10, 1063–1069 (2008). https://doi.org/10.1007/s11051-008-9370-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11051-008-9370-7

Keywords

Navigation