Skip to main content

Advertisement

Log in

Synthesis and post-processing of nanomaterials using microreaction technology

  • FOCUS ON NANOMANUFACTURING
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

A critical barrier to the routine use of nanomaterials is the tedious, expensive means of their synthesis. Microreaction technology takes advantage of the large surface area-to-volume ratios within microchannel structures to accelerate heat and mass transport. This accelerated transport allows for rapid changes in reaction temperatures and concentrations leading to more uniform heating and mixing which can have dramatic impacts on macromolecular yields and nanoparticle size distributions. Benefits of microreaction technology include higher yield and reactant conversion, better energy efficiency and less by-product generation. Microreactors can help minimize the environmental impact of nanoproduction by enabling solvent free mixing, integrated separation techniques and reagent recycling. The possibility of synthesizing nanomaterials in the required volumes at the point-of-use eliminates the need to store and transport potentially hazardous materials and provides the flexibility for tailoring complex functional nanomaterials. Recognizing these benefits for nanosynthesis, continuous flow microreactors have been used by several research groups to synthesize and characterize nanomaterials. An overview of these efforts and issues related to scale up and other post synthesis processes such as separation and deposition are presented in this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Ajmera SK, Delattre C, Schmidt MA, Jensen KF (2002) Microfabricated differential reactor for heterogeneous gas phase catalyst testing. J Catal 209:401–412

    Article  CAS  Google Scholar 

  • Akthakul A, Hochbaum AI, Stellacci F, Mayes AM (2005) Size fractionation of metal nanoparticles by membrane filtration. Adv Mater 17(5):532–535

    Article  CAS  Google Scholar 

  • Al-Somali AM, Krueger KM, Falkner JC, Colvin VL (2004) Recycling size exclusion chromatography for the analysis and separation of nanocrystalline gold. Anal Chem 76:5903–5910

    Article  CAS  Google Scholar 

  • Amador C, Gavriilidis A, Angeli P (2004) Flow distribution in different microreactor scale-out geometries and the effect of manufacturing tolerances and channel blockage. Chem Eng J 101:379–390

    Article  CAS  Google Scholar 

  • Bas W, Steggerda JJ, Yan S, Casalnuovo JA, Mueting AM, Pignolet LH (1998) Separation of cationic metal cluster compounds by reversed-phase HPLC. Inorg Chem 27(5):948–951

    Article  Google Scholar 

  • Bejan A, Errera MR (1997) Deterministic tree networks for fluid flow: geometry for minimal flow resistance between a volume and one point. Fractals 5:685–695

    Article  Google Scholar 

  • Bouquey M, Serra C, Prat L, Hadziioannou G (2007) Microfluidic synthesis and assembly of reactive polymer beads to form new structured polymer materials. Book of abstracts, 9th international conference on microreaction technology, pp 104–105

  • Chan EM, Mathies RA, Alivisatos AP (2003) Size-controlled growth of CdSe nanocrystals in microfluidic reactors. Nano Lett 3(2):199–201

    Article  CAS  Google Scholar 

  • Chan EM, Alivisatos AP, Mathies RA (2005) High-temperature microfluidic synthesis of CdSe nanocrystals in nanoliter droplets. J Am Chem Soc 127:13854–13861

    Article  CAS  Google Scholar 

  • Chang HY, Chen HI (2005) Morphological evolution for CeO2 nanoparticles synthesized by precipitation techniques. J Cryst Growth 283:457–468

    Article  CAS  Google Scholar 

  • Chang YJ, Mugdur PH, Han S-Y, Morrone AA, Ryu SO, Lee TJ, Chang C-H (2006) Nanocrystalline CdS MISFETs fabricated by a novel continuous flow microreactor. Electrochem Solid-State Lett 9(5):G174–G177

    Article  CAS  Google Scholar 

  • Chattopadhyay D, Lastella S, Kim S, Papadimitrakopoulos F (2002) Length separation of zwitterion-functionalized single wall carbon nanotubes by GPC. J Am Chem Soc 124:728–729

    Article  CAS  Google Scholar 

  • Commenge JM, Falk L, Corriou JP, Matlosz M (2002) Optimal design for flow uniformity in microchannel reactors. AIChE J 48(2):345–348

    Article  CAS  Google Scholar 

  • deMello AJ (2006) Control and detection of chemical reactions in microfluidic systems. Nature 442:394–402

    Article  CAS  Google Scholar 

  • deMello JC, deMello AJ (2004) Microsacle reactors: nanoscale products. Lab Chip 4:11N–15N

    Article  CAS  Google Scholar 

  • Edel JB, Fortt R, deMello JC, deMello AJ (2002) Microfluidic routes to the controlled production of nanoparticles. Chem Commun 10:1136–1137

    Article  CAS  Google Scholar 

  • Ehrfeld W, Hessel V, Lowe H (2000) Microreactors: new technology for modern chemistry. Wiley-VCH Verlag GmbH, Weinheim

    Google Scholar 

  • Elimelech M, Gregory J, Jia X, Williams RA (1998) Particle deposition & aggregation, measurement, modeling and simulation. Butterworth-Heinemann

  • Fournier MC, Falk L, Villermaux J (1996) A new parallel competing reaction system for assessing micromixing efficiency—experimental approach. Chem Eng Sci 51(22):5053–5064

    Article  CAS  Google Scholar 

  • Gautam D, Benson HAE, Yan C (2005) Comparison of diafiltration and tangential flow filtration for purification of nanoparticle suspensions. Pharm Res 22(12):2152–2162

    Article  CAS  Google Scholar 

  • Glasgow I, Aubry N (2003) Enhancement of microfluidic mixing using time pulsing. Lab Chip 3:114–120

    Article  CAS  Google Scholar 

  • Han S-Y, Chang Y-J, Lee D-H, Ryu SO, Lee T-J, Chang C-H (2007) Chemical nanoparticle deposition of transparent ZnO thin films. Electrochem Solid-State Lett 10(1):K1–K5

    Article  CAS  Google Scholar 

  • Hessel V, Hardt S, Lowe H (2004) Chemical micro process engineering fundamentals, modeling and reactions. Wiley-VCH

  • Hodes G (2003) Chemical solution deposition of semiconductor films. Marcel Dekker, New York

    Google Scholar 

  • Huang L, Wang D, Tang H, Wang S (2006) Separation and purification of nano-Al13 by UF method. Colloids Surf A Physicochem Eng Asp 275:200–208

    Article  CAS  Google Scholar 

  • Idelchik IE (1991) Fluid dynamics of industrial equipment: flow distribution design methods. Taylor & Francis, London

    Google Scholar 

  • Idelchik IE (1994) Handbook of hydraulic resistance. CRC Press, Boca Raton

    Google Scholar 

  • Ismagilov RF (2003) Integrated microfluidic systems. Angew Chem Int Ed 42:4130–4132

    Article  CAS  Google Scholar 

  • Jahanshahi M, Zhang Z, Lyddiatt A (2005) Subtractive chromatography for purification and recovery of nano-bioproducts. IEE Proc Nanobiotechnol 152(3):121–126

    Article  CAS  Google Scholar 

  • Jimenez VL, Leopold MC, Mazzitelli C, Jorgenson JW, Murray RW (2003) HPLC of monolayer-protected gold nanoclusters. Anal Chem 75:199–206

    Article  CAS  Google Scholar 

  • Jongen N, Donnet M, Bowen P, Lemaître J, Hofmann H, Schenk R, Hofmann C, Aoun-Habbache M, Guillemet-Fritsch M, Sarrias J, Rousset A, Viviani M, Buscaglia MT, Buscaglia V, Nanni P, Testino A, Herguijuela JR (2003) Development of a continuous segmented flow tubular reactor and the “scale-out” concept—in search of perfect powders. Chem Eng Technol 26(3):303–305

    Article  CAS  Google Scholar 

  • Khan SA, Günther A, Schmidt MA, Jensen KF (2004) Microfluidic synthesis of colloidal silica. Langmuir 20:8604–8611

    Article  CAS  Google Scholar 

  • Kockmann N (2006) Transport processes and exchange equipment. In: Kockmann N (ed) Micro process engineering, chapter 3. Wiley-VCH

  • Krishnadasan S, Tovilla J, Vilar R, deMello AJ, deMello JC (2004) On-line analysis of CdSe nanoparticle formation in a continuous flow chip-based microreactor. J Mater Chem 14:2655–2660

    Article  CAS  Google Scholar 

  • Kroon J, Chang C-H, Nwachukwu F, Paul BK (2003) Investigations of microreaction technology for the production of semiconductor nanocrystals. In: 7th international conference on microreaction technology

  • Krueger KM, Al-Somali AM, Falkner JC, Colvin VL (2005) Characterization of nanocrystalline CdSe by size exclusion chromatography. Anal Chem 77:3511–3515

    Article  CAS  Google Scholar 

  • Lin XZ, Terepka AD, Yang H (2004) Synthesis of silver nanoparticles in a continuous flow tubular microreactor. Nano Lett 4(11):2227–2232

    Article  CAS  Google Scholar 

  • Liu S, Chang C-H (2007) High rate convergent synthesis and deposition of polyamide dendrimers using a continuous-flow microreactor. Chem Eng Technol 30(3):334–340

    Article  CAS  Google Scholar 

  • Liu S, Chang C-H, Paul BK, Remcho VT, Abhinkar B (2006) Synthesis of dendrimers using continuous flow microreactors. In: Proceedings of 2006 AIChE spring national meeting

  • Liu S, Chang C-H, Paul BK, Remcho VT (2008) Convergent synthesis of polyamido dendrimer using a continuous flow microreactor. Chem Eng J 135S:S333–S337

    Article  CAS  Google Scholar 

  • Mies MJM, Rebrov, DeCroon, MHJM, Schouten, JC, Ismagilov IZ (2006) Inlet section for micro-reactor. Patent PCT/NL2006/050074

  • Mugdur PH, Chang YJ, Han S-Y, Su Y-W, Morrone AA, Ryu SO, Lee T-J, Chang C-H (2007) A comparison of chemical bath deposition of CdS from a batch reactor and a continuous-flow microreactor. J Electrochem Soc 154(9):D482–D488

    Article  CAS  Google Scholar 

  • Munson BR, Young DF, Okiishi TH (1994) Fundamentals of fluid mechanics, 2nd edn. John Wiley and Sons, Inc., NY

    Google Scholar 

  • Nagasawa H, Tsujiuchi T, Maki T, Mae K (2007) Controlling fine particle formation processes using a concentric microreactor. AIChE J 53(1):196–206

    Article  CAS  Google Scholar 

  • Nakamura H, Yamaguchi Y, Miyazaki M, Maeda H, Uehara M, Mulvaney P (2002) Preparation of CdSe nanocrystals in micro-flow-reactor. Chem Commun 23:2844–2845

    Article  CAS  Google Scholar 

  • Niyogi S, Hu H, Hamon MA, Bhowmik P, Zhao B, Rozenzhak SM, Chen J, Itkis ME, Meier MS, Haddon RC (2001) Chromatographic purification of soluble single-walled carbon nanotubes (s-SWNTs). J Am Chem Soc 123:733–734

    Article  CAS  Google Scholar 

  • Paul BK (2005) Micro energy and chemical systems and multi-scale fabrication. In: Micromanufacturing and nanotechnology, chapter 14. Springer-Verlag, Germany

  • Paul BK, Peterson RB (1999) Microlamination for microtechnology-based energy, chemical, and biological systems. In: ASME IMECE, vol. 39. Nashville, Tennessee, AES, November 15–20, pp 45–52

  • Rebrov EV, Duinkerke SA, Schouten JC (2003) Optimization of heat transfer characteristics, flow distribution, and reaction processing for a microstructured reactor/heat-exchanger for optimal performance in platinum catalyzed ammonia oxidation. Chem Eng J 93:201–216

    Article  CAS  Google Scholar 

  • Rebrov EV, Ismagilov IZ, Ekatpure RP, DeCroon MHJM, Schouten JC (2007) Header design for flow equalization in microstructured reactors. AIChE J 53(1):28–38

    Article  CAS  Google Scholar 

  • Riman IS, Cherepkova VG (1973) An approximate method for calculation of flow field in a tube filled with tick-walled bars. Ind Aerodyn 30:65–74

    Google Scholar 

  • Ritter M (2002) Nanostructured materials. Ceram Bull 81(3):33–36

    Google Scholar 

  • Rundel JT, Paul BK, Remcho VT (2007) Organic solvent nanofiltration for microfluidic purification of poly(amidoamine) dendrimers. J Chromatogr A 1162(2, 31):167–174

    Article  CAS  Google Scholar 

  • Schenk R, Hessel V, Hofmann C, Kiss J, Löwe H, Ziogas A (2004) Numbering-up of micro devices: a first liquid-flow splitting unit. Chem Eng J 101:421–429

    Article  CAS  Google Scholar 

  • Schenk R, Hessel V, Hofmann C, Löwe H, Schonfeld F (2003) Novel liquid-flow splitting unit specifically made for numbering-up of liquid-liquid chemical microprocessing. Chem Eng Technol 26(12):1271–1280

    Article  CAS  Google Scholar 

  • Schnabel U, Fischer Ch-H, Kenndler E (1997) Characterization of colloidal gold nanoparticles according to size by capillary zone electrophoresis. J Microcolumn Sep 9(7):529–534

    Article  CAS  Google Scholar 

  • Shestopalov I, Tice JD, Ismagilov RF (2004) Multi-step synthesis of nanoparticles performed on millisecond time scale in a microfluidic droplet-based system. Lab Chip 4:316–321

    Article  CAS  Google Scholar 

  • Siebrands T, Giersig M, Mulvaney P, Fischer Ch-H (1993) Steric exclusion chromatography of nanometer-sized gold particles. Langmuir 9:2297–2300

    Article  CAS  Google Scholar 

  • Sounart TL, Safier PA, Voigt JA, Hoyt J, Tallant DR, Matzke CM, Michalske TA (2007) Spatially-resolved analysis of nanoparticle nucleation and growth in a microfluidic reactor. Lab Chip 7:908–915

    Article  CAS  Google Scholar 

  • Sovran G, Klomp ED (1967) Experimentally determined optimum geometries for rectilinear diffusers with rectangular, conical or annular cross-section. Fluid mechanics of internal flow. Elsevier, Amsterdam

    Google Scholar 

  • Sweeney SF, Woehrle GH, Hutchison JE (2006) Rapid purification and size separation of gold nanoparticles via diafiltration. J Am Chem Soc 128:3190–3197

    Article  CAS  Google Scholar 

  • Takagi M, Maki T, Miyahara M, Mae K (2004) Production of titania nanoparticles by using a new microreactor assembled with same axle dual pipe. Chem Eng J 101:269–276

    Article  CAS  Google Scholar 

  • Taylor RA, Penney WR, Vo HX (2005) Scale-up methods for fast competitive chemical reactions in pipeline mixers. Ind Eng Chem Res 44:6095–6102

    Article  CAS  Google Scholar 

  • Tishchenko G, Luetzow K, Schauer J, Albrecht W, Bleha M (2001) Purification of polymer nanoparticles by diafiltration with polysulfone/hydrophilic polymer blend membranes. Sep Purif Technol 22–23:403–415

    Article  Google Scholar 

  • Trachsel F, Günther A, Khan S, Jensen KF (2005) Measurement of residence time distribution in microfluidic systems. Chem Eng Sci 60:5729–5737

    CAS  Google Scholar 

  • Tseng CT, Paul BK (2007) Comparison of batch mixing and micromixing approaches in the synthesis and deposition of ceria nanoparticles. Transactions of NAMRI, 35

  • Wagner J, Köhler JM (2005) Continuous synthesis of gold nanoparticle in a microreactor. Nano Lett 5(4):685–691

    Article  CAS  Google Scholar 

  • Wang H, Nakamura H, Uehara M, Miyazaki M, Maeda H (2002) Preparation of titania particles utilizing the insoluble phase interface in a microchannel reactor. Chem Commun 14:1462–1463

    Article  CAS  Google Scholar 

  • Wei G-T, Liu F-K (1999) Separation of nanometer gold particles by size exclusion chromatography. J Chromatogr A 836:253–260

    Article  CAS  Google Scholar 

  • Wei G-T, Liu F-K, Wang CRC (1999) Shape separation of nanometer gold particles by size-exclusion chromatography. Anal Chem 71:2085–2091

    Article  CAS  Google Scholar 

  • Wiessmeier G, Honicke D (1998) Strategy for the development of microchannel reactors for heterogeneously catalyzed reactions. In: Proceedings of the second international conference on microreaction technology, vol 24. AlChE, New Orleans, pp 24–32

    Google Scholar 

  • Wilcoxon JP, Martin JE, Provencio P (2000) Size distributions of gold nanoclusters studied by liquid chromatography. Langmuir 16:9912–9920

    Article  CAS  Google Scholar 

  • Xu X, Ray R, Gu Y, Ploehn HJ, Gearheart L, Raker K, Scrivens WA (2004) Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments. J Am Chem Soc 126:12736–12737

    Article  CAS  Google Scholar 

  • Yen BKH, Scott NE, Jensen KF, Bawendi MG (2003) A continuous-flow microcapillary reactor for the preparation of a size series of CdSe nanocrystals. Adv Mater 15(21):1858–1862

    Article  CAS  Google Scholar 

  • Yen BKH, Gunther A, Schmidt MA, Jensen KF, Bawendi MG (2005) A microfabricated gas–liquid segmented flow reactor for high-temperature synthesis: the case of CdSe quantum dots. Angew Chem Int Ed 44:5447–5451

    Article  CAS  Google Scholar 

  • Zhao B, Hu H, Niyogi S, Itkis ME, Hamon MA, Bhowmik P, Meier MS, Haddon RC (2001) Chromatographic purification and properties of soluble single-walled, carbon nanotubes. J Am Chem Soc 123:11673–11677

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Helpful input from Santosh Tiwari, Daniela Hutanu, Jack T. Rundel, Yu-Jen Chang and Shu-hong Liu is greatly appreciated. The authors would also like to acknowledge the financial support from the Air Force Research Laboratory FA8650-05-1-5041, the W.M. Keck Foundation 031879, the National Science Foundation CAREER CBET-0348723, and CBET-0654434.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chih-Hung Chang or Vincent T. Remcho.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chang, CH., Paul, B.K., Remcho, V.T. et al. Synthesis and post-processing of nanomaterials using microreaction technology. J Nanopart Res 10, 965–980 (2008). https://doi.org/10.1007/s11051-007-9355-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11051-007-9355-y

Keywords

Navigation