Skip to main content
Log in

Preparation of core-shell Ti-Nb oxide nanocrystals

  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Nanosized powders of Ti-Nb oxide core-shell nanocrystals with atomic ratios of Nb/Ti = 0.11, 0.25, and 0.38 have been prepared by two preparation routes. The first route was co-precipitation, followed by␣annealing, using NbCl5 as a source of Nb. The second route was coating of pure TiO2 nanocrystals by Nb-isopropoxide in liquid medium, followed by impregnation of the Nb into the nanoparticles by annealing. Both methods yielded anatase nanocrystals with a Nb-rich shell and a core, which had much lower Nb loadings. The anatase structure solid solution (with Nb incorporated) was stable under annealing up to 760°C. The particle size remained within the nanometric scale (<50 nm) under heat-treatment up to 760°C. It has been shown that the fabricated powders can be redispersed in aqueous media by simple ultrasound treatment, resulting in nanosized dispersions. Using a variety of analytical techniques, including depth profiling of single nanocrystallites by AES combined with sputtering by Ar ions, the mechanism of the core-shell structure creation was studied. It is proposed that the formation of the core-shell structure is governed by solubility limitations in the co-precipitation route and by solubility and diffusion limitations in the coating-incorporation route.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anukunprasert T., Saiwan C., Traversa E. (2005) The development of gas sensor for carbon monoxide monitoring using nanostructure of Nb-TiO2. Sci. Technol. Adv. Mater. 6:359–363

    Article  CAS  Google Scholar 

  • Arbiol J., Cerdà J., Dezanneau G., Cirera A., Peirò F., Cornet A., Morante J.R. (2002) Effects of Nb doping on the TiO2 anatase-to-rutile phase transition. J. Appl. Phy. 92(2):853–861

    Article  CAS  Google Scholar 

  • Atashbar M.Z., Sun H.T., Gong B., Wlodarski W., Lamb R. (1998) XPS study of Nb-doped oxygen sensing TiO2 thin films prepared by sol-gel method. Thin Solid Films 326:238–244

    Article  CAS  Google Scholar 

  • Chappel S., Chen S.G., Zaban A. (2002) TiO2-coated nanopoprous SnO2 electrodes for dye-sensitized solar cells. Langmuir 18:3336–3342

    Article  CAS  Google Scholar 

  • Chen S.G., Chappel S., Diamant Y., Zaban A. (2001) Preparation of Nb2O5 coated TiO2 nanoporous electrodes and their application in dye-sensitized solar cells. Chem. Mater. 13:4629–4634

    Article  CAS  Google Scholar 

  • Cui H., Dwight K., Soled S., Wold A. (1995) Surface acidity and photocatalytic activity of Nb2O5/TiO2 photocatalysts. J. Solid State Chem. 115:187–191

    Article  CAS  Google Scholar 

  • Ferroni M., Carotta M.C., Guidi V., Martinelli G., Ronconi F., Richard O., Van Dyck D., Van Landuyt J. (2000) Structural characterization of Nb-TiO2 nanosized thick-films for gas sensing applications. Sens. Actuators B 68:140–145

    Article  Google Scholar 

  • Gao Y., Liang Y., Chambers S.A. (1996) Synthesis and characterization of Nb-doped TiO2 (110) surfaces by molecular beam epitaxy. Surf.Sci. 348:17–27

    Article  CAS  Google Scholar 

  • Grätzel M. (2001) Photoelectrochemical cells. Nature 414:338–344

    Article  Google Scholar 

  • Hagfeldt A., Grätzel M. (2000) Molecular photovoltaics. Acc. Chem. Res. 33(5):269–277

    Article  CAS  Google Scholar 

  • Hirano M., Matsushima K. (2006) Effect of niobium on the structure and photoactivity of anatase (TiO2) nanoparticles. J. Nanosci. Nanotechnol. 6(3):762–770

    CAS  Google Scholar 

  • Kay A., Grätzel M. (2002) Dye-sensitized core-shell nanocrystals: Improved efficiency of mesoporous tin oxide electrodes coated with a thin layer of an insulating oxide. Chem. Mater. 14:2930–2935

    Article  CAS  Google Scholar 

  • Morris D., Dou Y., Rebane J., Mitchell C.E.J., Egdell R.G. (2000) Photoemission and STM study of the electronic structure of Nb-doped TiO2. Phy. Rev. B 61(20):13445–13457

    Article  CAS  Google Scholar 

  • Palomares E., Clifford J.N., Haque S.A., Lutz T., Durrant J.R. (2003) Control of charge recombination dynamics in dye sensitized solar cells by the use of conformally deposited metal oxide blocking layers. J. Am. Chem. Soc. 125:475–482

    Article  CAS  Google Scholar 

  • Park N.G., Kang M.G., Kim K.M., Ryu K.S., Chang S.H. (2004) Morphological and photoelectrochemical characterization of core-shell nanoparticle films for dye-sensitized solar cells: ZnO type shell on SnO2 and TiO2 cores. Langmuir 20:4246–4253

    Article  CAS  Google Scholar 

  • Ruiz A., Calleja A., Espiell F., Cornet A., Morante J.R. (2003) Nanosized Nb-TiO2 gas sensors derived from alkoxides hydrolization. IEEE Sens. J. 3(2):189–194

    Article  CAS  Google Scholar 

  • Simakov S.A., Tsur Y. (2006) Surface stabilization of nano-sized titanium oxide: Improving the colloidal stability and the sintering morphology. J. Nanopart. Res., DOI 10.1007/s11051-006-9099-0

  • Védrine J.C., Coudurier G., Ouqour A., Pries de Oliveira P.G., Volta J.C. (1996) Niobium oxide based materials as catalysts for acidic and partial oxidation type reactions. Catal. Today 28:3–15

    Article  Google Scholar 

  • Wang Z.S., Huang C.H., Huang Y.Y., Hou Y.J., Xie P.H., Zhang B.W., Cheng H.M. (2001) A highly efficient solar cell made from a dye-modified ZnO-covered TiO2 nanoporous electrode. Chem. Mater. 13:678–682

    Article  CAS  Google Scholar 

  • Whang C.M., Kim J.G., Hwang H.J. (2005) Photocatalytic properties of the transition metal doped TiO2 powder prepared by Sol-Gel process. Key Eng. Mater. 1:280–283

    Google Scholar 

  • Yamada Y., Seno Y., Masuoka Y., Nakamura T., Yamashita K. (2000) NO2 sensing characteristics of Nb-doped TiO2 thin films and their electronic properties. Sens. Actuators B 66:164–166

    Article  Google Scholar 

  • Yang S., Huang Y., Huang C., Zhao X. (2002) Enhanced energy conversion efficiency of the Sr2+-modified nanoporous TiO2 electrode sensitized with a ruthenium complex. Chem. Mater. 14:1500–1504

    Article  CAS  Google Scholar 

  • Young R.A. (1993) The Rietveld Method. Oxford University Press

  • Zaban A., S.G. Chen, S. Chappel, B.A. Gregg, 2000. Bilayer nanoporous electrodes for dye sensitized solar cells. Chem. Commun. 2231–2232

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoed Tsur.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Simakov, D.S.A., Tsur, Y. Preparation of core-shell Ti-Nb oxide nanocrystals. J Nanopart Res 10, 77–85 (2008). https://doi.org/10.1007/s11051-007-9223-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11051-007-9223-9

Keywords

Navigation