Skip to main content
Log in

One-step green route to narrowly dispersed copper nanocrystals

  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

We report a total “green” chemical method in aqueous solution for synthesizing stable narrowly distributed copper nanoparticles with average diameter less than 5 nm in the presence of Polyvinylpyrrolidone (PVP) as a stabilizer and without any inert gas protection. In our synthesis route, ascorbic acid, natural vitamin C (VC), an excellent oxygen scavenger, acts as both reducing agent and antioxidant, to reduce the metallic ion precursor, and to effectively prevent the common oxidation process of the newborn pure copper nanoclusters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anastas P.T., Warner J.C. (1998). Green Chemistry: Theory and Practice. Oxford University Press, Inc., New York

    Google Scholar 

  • Avyappan S., Gopalan R.S., Subbanna G.N. (1997). Nanoparticles of Ag, Au, Pd, and Cu produced by alcohol reduction of the salts. J. Mater. Res. 12 (2): 398–401

    Article  Google Scholar 

  • Condorelli G.G., Costanzo L.L., Fragalà I.L., Giuffrida S., Ventimiglia G. (2003). A single photochemical route for the formation of both copper nanoparticles and patterned nanostructured films. J. Mater. Chem. 13: 2409–2411

    Article  CAS  Google Scholar 

  • Dhas N.A., Raj C.P., Gedanken A. (1998). Synthesis, characterization, and properties of metallic copper nanoparticles. Chem. Mater. 10:1446–1452

    Article  CAS  Google Scholar 

  • Eastman J.A., Choi S.U.S., Li S., Yu W., Thompson L.J. (2001). Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles. Appl. Phys. Lett. 78: 718–720

    Article  CAS  Google Scholar 

  • Gates B.C. (1995). Supported metal-clusters-synthesis, structure, and catalysis. Chem. Rev. 95(3): 511–522

    Article  CAS  Google Scholar 

  • Henglein A. (1993). Physicochemical properties of small metal particles in solution: “microelectrode” reactions, chemisorption, composite metal particles, and the atom-to-metal transition. J. Phys. Chem. 97: 5457–5471

    Article  CAS  Google Scholar 

  • Hwang C.-B., Fu Y.-S., Lu Y.-L., Jang S.-W., Chou P.-T., Chris Wang C. R., Yu S.J. (2000). Synthesis, characterization, and highly efficient catalytic reactivity of suspended palladium nanoparticles. J. Catal. 195: 336–341

    Article  CAS  Google Scholar 

  • Joshi S.S., Patil S.F., Iyer V., Mahumuni S. (1998). Radiation induced synthesis and characterization of copper nanoparticles. Nanostruct. Mater. 10: 1135–1144

    Article  CAS  Google Scholar 

  • Kapoor S., Mukherjee T. (2003). Photochemical formation of copper nanoparticles in poly(N-vinylpyrrolidone). Chem. Phys. Lett. 370: 83–87

    Article  CAS  Google Scholar 

  • Kruis F.E., Fissan H., Peled A. (1998). Synthesis of nanoparticles in the gas phase for electronic, optical and magnetic applications – a review. J. Aerosol Sci. 29: 511–535

    Article  CAS  Google Scholar 

  • Liu J., Raveendran P., Qin G., Ikushima Y. (2005). Self-assembly of β-D glucose-stabilized Pt nanocrystals into nanowire-like structures. Chem. Commun. (23): 2972–2974

    Article  CAS  Google Scholar 

  • Liu X., Cai W.P., Bi H.J. (2002). Optical absorption of copper nanoparticles dispersed within pores of monolithic mesoporous silica. J. Mater. Res. 17: 1125–1128

    Article  CAS  Google Scholar 

  • Lu Q., Gao F., Komarneni S. (2005). A green chemical approach to the synthesis of Tellurium nanowires. Langmuir 21: 6002–6005

    Article  PubMed  CAS  Google Scholar 

  • Matlack A.S. (2001). Introduction to Green Chemistry. Marcel Dekker, Inc., New York

    Google Scholar 

  • Narayanan R., El-Sayed M.A. (2003). Effect of Catalysis on the Stability of Metallic Nanoparticles: Suzuki Reaction Catalyzed by PVP-Palladium Nanoparticles. J. Am. Chem. Soc. 125: 8340–8347

    Article  PubMed  CAS  Google Scholar 

  • Nasibulin A.G., Ahonen P.P., Richard O., Kauppinen E.I., Altman I.S. (2001). Copper and copper oxide nanoparticle formation by chemical vapor nucleation from copper (II) acetylacetonate. J. Nanopart. Res. 3: 383–398

    Article  Google Scholar 

  • Poliakoff M., Anastas P. (2001). A principled stance. Nature 413: 257

    Article  PubMed  CAS  Google Scholar 

  • Raveendran P., Fu J., Wallen S.L. (2003). Completely “Green” synthesis and stabilization of metal nanoparticles. J. Am. Chem. Soc. 125: 13940–13941

    Article  PubMed  CAS  Google Scholar 

  • Reetz M.T., Helbig W. (1994). Size-selective synthesis of nanostructured transition metal clusters. J. Am. Chem. Soc. 116: 7401–7402

    Article  CAS  Google Scholar 

  • Schmid G. (1992). Large clusters and colloids-metals in the embryonic state. Chem. Rev. 92: 1709–1727

    Article  CAS  Google Scholar 

  • Song X.Y., Sun S.X., Zhang W.M., Yin Z.L. (2004). A method for the synthesis of spherical copper nanoparticles in the organic phase. J. Colloid Interface Sci. 273: 463–469

    Article  PubMed  CAS  Google Scholar 

  • Sun L., Zhang Z.J., Dang H.X. (2003). A novel method for preparation of silver nanoparticles. Mater. Lett. 57: 3874–3879

    Article  CAS  Google Scholar 

  • Sun Y.G., Xia Y.N. (2002). Shape-controlled synthesis of gold and silver nanoparticles. Science 298: 2176–2179

    Article  PubMed  CAS  Google Scholar 

  • Tatasov S., Kolubaev A., Belyaev S., Lerner M., Tepper F. (2002). Study of friction reduction by nanocopper additives to motor oil. Wear 252: 63–69

    Article  Google Scholar 

  • Tsai K.L., Dye J.L. (1991). Nanoscale metal particles by homogeneous reduction with alkalides or electrides. J. Am. Chem. Soc. 113: 1650–1652

    Article  CAS  Google Scholar 

  • Tsai K.L., Dye J.L. (1993). Synthesis, properties, and characterization of nanometer-size metal particles by homogeneous reduction with alkalides and electrides in aprotic solvents. Chem. Mater. 5: 540–546

    Article  CAS  Google Scholar 

  • Weare W.W., Reed S.M., Warner M.G., Hutchison J.E. (2000). Improved synthesis of small (dCORE ≈ 1.5 nm) phosphine-stabilized gold nanoparticles. J. Am. Chem. Soc. 122: 12890–12891

    Article  CAS  Google Scholar 

  • Wei Q., Kang S.Z., Mu J. (2004). “Green” synthesis of starch capped CdS nanoparticles. Colloids and Surfaces A: Physicochem. Eng. Aspects 247: 125–127

    Article  CAS  Google Scholar 

  • Wu S.-H., Chen D.-H. (2004). Synthesis of high-concentration Cu nanoparticles in aqueous CTAB solutions. J. Colloid Interface Sci. 273: 165–169

    Article  PubMed  CAS  Google Scholar 

  • Xie S.-Y., Ma Z.-J., Wang C.-F., Lin S.-C., Jiang Z.-Y., Huang R.-B., Zheng L.-S. (2004). Preparation and self-assembly of copper nanoparticles via discharge of copper rod electrodes in a surfactant solution: a combination of physical and chemical processes. J. Solid State Chem. 177: 3743–3747

    Article  CAS  Google Scholar 

  • Xuan Y., Li Q. (2000). Heat transfer enhancement of nanofluids. Int. J. Heat and Fluid Flow 21: 58–64

    Article  CAS  Google Scholar 

  • Zhang Y.C., Xing R., Hu X.Y. (2004). A green hydrothermal route to copper nanocrystallites. J. Crystal Growth 273: 280–284

    Article  CAS  Google Scholar 

  • Zheng H.G., Liang J.H., Zeng J.H. (2001). Preparation of nickel nanopowders in ethanol-water system (EWS). Mater. Res. Bull. 36: 947–952

    Article  CAS  Google Scholar 

  • Zhu H.T., Zhang C.Y., Yin Y.S. (2004). Rapid synthesis of copper nanoparticles by sodium hypophosphite reduction in ethylene glycol under microwave irradiation. J. Crystal Growth 270: 722–728

    Article  CAS  Google Scholar 

  • Zhu Y.J., Qian Y.T., Zhang M.W., Chen Z.Y., Xu D.F. (1994). Preparation and characterization of nanocrystalline powders of cuprous oxide by using γ-radiation. Mater. Res. Bull. 29: 377–383

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This project is funded by NASA/Space Grant and NSF (CTS-0500402).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Taofang Zeng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, C., Mosher, B.P. & Zeng, T. One-step green route to narrowly dispersed copper nanocrystals. J Nanopart Res 8, 965–969 (2006). https://doi.org/10.1007/s11051-005-9065-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11051-005-9065-2

Keywords

Navigation