Skip to main content

Advertisement

Log in

Metal Sulfide Cluster Complexes and their Biogeochemical Importance in the Environment

  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

An Erratum to this article was published on 01 December 2005

Abstract

Aqueous clusters of FeS, ZnS and CuS constitute a major fraction of the dissolved metal load in anoxic oceanic, sedimentary, freshwater and deep ocean vent environments. Their ubiquity explains how metals are transported in anoxic environmental systems. Thermodynamic and kinetic considerations show that they have high stability in oxic aqueous environments, and are also a significant fraction of the total metal load in oxic river waters. Molecular modeling indicates that the clusters are very similar to the basic structural elements of the first condensed phase forming from aqueous solutions in the Fe–S, Zn–S and Cu–S systems. The structure of the first condensed phase is determined by the structure of the cluster in solution. This provides an alternative explanation of Ostwald’s Rule, where the most soluble, metastable phases form before the stable phases. For example, in the case of FeS, we showed that the first condensed phase is nanoparticulate, metastable mackinawite with a particle size of 2 nm consisting of about 150 FeS subunits, representing the end of a continuum between aqueous FeS clusters and condensed material. These metal sulfide clusters and nanoparticles are significant in biogeochemistry. Metal sulfide clusters reduce sulfide and metal toxicity and help drive ecology. FeS cluster formation drives vent ecology and AgS cluster formation detoxifies Ag in Daphnia magna neonates. We also note a new reaction between FeS and DNA and discuss the potential role of FeS clusters in denaturing DNA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • A.W. Adamson (1990) Physical Chemistry of Surfaces EditionNumber5 John Wiley New York 777

    Google Scholar 

  • P.W. Atkins (1978) Physical Chemistry W. H. Freeman and Co. San Francisco, CA 1022

    Google Scholar 

  • Banfield J. & H. Zhang, 2001. Nanoparticles in the environment. In: Banfield J. and Navrotsky A. eds. Nanoparticles and the Environment, Reviews in Mineral.Geochem. Vol. 44, 1–58

  • A. Bianchi A. Domenech E. Garcia-Espana S.V. Luis (1993) ArticleTitleElectrochemical studies on anion coordination chemistry. Application of the molar-ratio method to competitive cyclic voltammetry Anal. Chem. 65 3137–3142 Occurrence Handle10.1021/ac00069a031 Occurrence Handle1:CAS:528:DyaK3sXlvV2mtL8%3D

    Article  CAS  Google Scholar 

  • A. Bianchini K.C. Bowles C.J. Brauner J.W. Gorsuch J.R. Kramer C.M. Wood (2002) ArticleTitleEvaluation of the effect of reactive sulfide on the acute toxicity of silver(I) to Daphnia magna, Part 2. Toxicity results Environ. Toxciol. Chem. 21 1294–1300 Occurrence Handle1:CAS:528:DC%2BD38Xktleru70%3D

    CAS  Google Scholar 

  • J. Buffle R.R. DeVitre D. Perret G.G. Leppard (1988) Combining field measurements for speciation in non perturable water samples J.R. Kramer H.E. Allen (Eds) Metal Speciation: Theory Analysis and Application Lewis Publ. Chelsea, MI 99–124

    Google Scholar 

  • J.K. Burdett (1980) Molecular Shapes John Wiley & Sons New York 287

    Google Scholar 

  • J. Burgess (1988) Ions in Solution: Basic Principles of Chemical Interactions Ellis Horwood-Wiley New York 191

    Google Scholar 

  • Burkert N. & N.L. Allinger, 1982. Molecular Mechanics. Amer. Chem. Society Monograph 177, Washington DC, 339 pp

  • Cohn, C.A., M. Borda & M. Schoonen, 2003. Fate of RNA in the presence of pyrite: Relevance to the origin of life. Abstracts of Papers Am. Chem Soc. 225, 029-GEOC

  • P.L. Croot J.W. Moffett G.W. Luther SuffixIII (1999) ArticleTitlePolarographic determination of half-wave potentials for copper-organic complexes in seawater Mar. Chem. 67 219–232 Occurrence Handle10.1016/S0304-4203(99)00054-7 Occurrence Handle1:CAS:528:DyaK1MXotVCqtbs%3D

    Article  CAS  Google Scholar 

  • K.D. Daskalakis G.R. Helz (1993) ArticleTitleThe solubility of sphalerite (ZnS) in sulfidic solutions at 25 °C and 1 atm pressure Geochim. Cosmochim. Acta 57 4923–4931 Occurrence Handle10.1016/0016-7037(93)90129-K Occurrence Handle1:CAS:528:DyaK2cXotFylsA%3D%3D

    Article  CAS  Google Scholar 

  • O. Echt A.R. Flotte M. Knapp K. Sattler E. Recknagel (1982) ArticleTitleMagic Numbers in Mass-Spectra of Xe, C2f4cl2 and Sf6 Clusters Berichte Der Bunsen-Gesellschaft-Phys. Chem. Chem. Phys. 86 860–865 Occurrence Handle1:CAS:528:DyaL38XlvFSrsr4%3D

    CAS  Google Scholar 

  • O. Echt K. Sattler E. Recknagel (1981) ArticleTitleMagic numbers for sphere packings – Experimental-verification in free xenon clusters Phys. Rev. Lett. 47 1121–1124 Occurrence Handle10.1103/PhysRevLett.47.1121 Occurrence Handle1:CAS:528:DyaL3MXlvFaksbw%3D

    Article  CAS  Google Scholar 

  • W. Giggenbach (1971) ArticleTitleOptical spectra of highly alkaline sulfide solutions and the second dissociation constant of hydrogen sulfide Inorg. Chem. 10 1333–1338 Occurrence Handle1:CAS:528:DyaE3MXksFCitro%3D

    CAS  Google Scholar 

  • G.R. Helz J.M. Charnock D.J. Vaughan C.D. Garner (1993) ArticleTitleMultinuclearity of aqueous copper and zinc bisulfide complexes: An EXAFS investigation Geochim. Cosmochim. Acta 54 15–25

    Google Scholar 

  • N. Herron Y. Wang H. Eckert (1990) ArticleTitleSynthesis and characterization of surface-capped, sized-quantizied CdS clusters. Chemical control of cluster size J. Am. Chem. Soc. 112 1322–1326 Occurrence Handle10.1021/ja00160a004 Occurrence Handle1:CAS:528:DyaK3cXosV2msA%3D%3D

    Article  CAS  Google Scholar 

  • Heywood, C.A., D. Rickard, J. Fry, A.J. Webster & A. Weightman, 2004. Interactions between iron sulphide and DNA. In: Wanty R.B. and Seal R.R. eds. Proceedings of the Eleventh International Symposium On Water-Rock Interaction, Vol. 2, pp. 1127–1130

  • J.E. Huheey E.A. Keiter R.L. Keiter (1993) Inorganic Chemistry: Principles of Structure and Reactivity EditionNumber4 Harper Collins New York 964

    Google Scholar 

  • F. Hulliger (1968) ArticleTitleCrystal chemistry of the chalcogenides and pnictides of the transition elements Struct. Bond. 4 83–229 Occurrence Handle1:CAS:528:DyaF1cXltVSgs70%3D

    CAS  Google Scholar 

  • H.E. Jones P.A. Trudinger L.A. Chambers N.A. Pyliotis (1974) ArticleTitleMetal accumulation with particular reference to dissimilatory sulphate-reducing bacteria Zeitschrift f. Allg. Mikrobiologie 16 425–435

    Google Scholar 

  • Kaschiev D., 2000. Nucleation: Basic Theory with Applications. Butterworth Heinemann, Oxford, 529 pp

  • A.R. Kortan R. Hull R.L. Opila M.G. Bawendi M.L. Steigerwald P.J. Carroll L.E. Brus (1990) ArticleTitleNucleation and growth of CdSe on ZnS quantum crystallite seeds, and vice versa, in inverse micelle media J. Am. Chem. Soc. 112 1327–1332 Occurrence Handle10.1021/ja00160a005 Occurrence Handle1:CAS:528:DyaK3cXosV2nug%3D%3D

    Article  CAS  Google Scholar 

  • H. Krebs (1968) Fundamentals of Inorganic Crystal Chemistry Mc-Graw Hill London 161–163

    Google Scholar 

  • J.S. Kuwabara G.W. Luther SuffixIII (1993) ArticleTitleDissolved sulfides in the oxic water column of San Francisco Bay, California Estuaries 16 567–573 Occurrence Handle1:CAS:528:DyaK2cXisl2hurw%3D

    CAS  Google Scholar 

  • M. Labrenz G.K. Druschel T. Thomsen-Ebert B. Gilbert S.A. Welch K.M. Kemner G.A. Logan R.E. Summons G. De Stasio P.L. Bond B. Lai S.D. Kelly J.F. Banfield (2001) ArticleTitleFormation of sphalerite (ZnS) deposits in natural biofilms of sulfate-reducing bacteria Science 290 1744–1747

    Google Scholar 

  • Landing W.M. & B.L. Lewis, 1991. Thermodynamic modeling of trace metal speciation in the Black Sea. In: Izdar E. and Murray J. eds. Black Sea Oceanography, NATO ASI Series, pp. 125–160

  • B.L. Lewis G.W. Luther SuffixIII H. Lane T.M. Church (1995) ArticleTitleDetermination of metal-organic complexation in natural waters by SWASV with pseudopolarograms Electroanalysis 7 166–177 Occurrence Handle10.1002/elan.1140070213 Occurrence Handle1:CAS:528:DyaK2MXltF2gtrg%3D

    Article  CAS  Google Scholar 

  • T. Løver W. Henderson G.A. Bowmaker J.M. Seakins R.P. Cooney (1997) ArticleTitleElectrospray mass spectrometry of thiophenolate-capped clusters of CdS, CdSe, and ZnS and of cadmium and zinc thiophenolate complexes: Observation of fragmentation and metal, chalcogenide, and ligand exchange processes Inorg. Chem. 36 3711–3723

    Google Scholar 

  • G.W. Luther SuffixIII E. Tsamakis (1989) ArticleTitleConcentration and form of dissolved sulfide in the oxic water column of the ocean Mar. Chem. 27 165–177 Occurrence Handle10.1016/0304-4203(89)90046-7 Occurrence Handle1:CAS:528:DyaK3cXmt1Wquw%3D%3D

    Article  CAS  Google Scholar 

  • G.W. Luther SuffixIII T.G. Ferdelman (1993) ArticleTitleVoltammetric characterization of iron (II) sulfide complexes in laboratory solutions and in marine waters and porewaters Environ. Sci. Technol. 27 1154–1163 Occurrence Handle10.1021/es00043a015 Occurrence Handle1:CAS:528:DyaK3sXitF2gsrs%3D

    Article  CAS  Google Scholar 

  • G.W. Luther SuffixIII D. Rickard S.M. Theberge A. Olroyd (1996) ArticleTitleDetermination of metal (bi)sulfide stability constants of Mn2+, Fe2+, Co2+, Ni2+, Cu2+ and Zn2+ by voltammetric methods Environ. Sci. Technol. 30 671–679 Occurrence Handle1:CAS:528:DyaK28XhtFWntw%3D%3D

    CAS  Google Scholar 

  • G.W. Luther SuffixIII S.M. Theberge D.T. Rickard (1999) ArticleTitleEvidence for aqueous clusters as intermediates during zinc sulfide formation Geochim. Cosmochim. Acta 63 3159–3169 Occurrence Handle10.1016/S0016-7037(99)00243-4 Occurrence Handle1:CAS:528:DyaK1MXotVClu7w%3D

    Article  CAS  Google Scholar 

  • G.W. Luther SuffixIII T.F. Rozan M. Taillefert D.B. Nuzzio C. Di Meo T.M. Shank R.A Lutz S.C. Cary (2001) ArticleTitleChemical speciation drives hydrothermal vent ecology Nature 410 813–816 Occurrence Handle10.1038/35071069 Occurrence Handle1:CAS:528:DC%2BD3MXjtVeks7s%3D

    Article  CAS  Google Scholar 

  • G.W. Luther SuffixIII S.M. Theberge T.F. Rozan D. Rickard C.C. Rowlands A. Oldroyd (2002) ArticleTitleAqueous copper sulfide clusters as intermediates during copper sulfide formation Environ. Sci. Technol. 36 394–402 Occurrence Handle10.1021/es010906k Occurrence Handle1:CAS:528:DC%2BD38XhtFantQ%3D%3D

    Article  CAS  Google Scholar 

  • G.W. Luther SuffixIII B. Glazer S. Ma R. Trouwborst B.R. Shultz G. Druschel C. Kraiya (2003) ArticleTitleIron and sulfur chemistry in a stratified Lake: Evidence for iron rich sulfide complexes Aquat. Geochem. 9 87–110 Occurrence Handle1:CAS:528:DC%2BD2cXhvF2lsrY%3D

    CAS  Google Scholar 

  • W. Martin M.J. Russell (2002) ArticleTitleOn the origin of cells: A hypothesis for the evolutionary transitions from abiotic geochemistry to chemoautorophic prokaryotes, and from rokaryotes to nucleated cells Philos. Trans. Roy. Soc. Lond.: Biol. Sci. 358 59–87

    Google Scholar 

  • J.W. Morse W.H. Casey (1988) ArticleTitleOstwald processes and mineral paragenesis in sediments Am. J. Sci. 288 537–560 Occurrence Handle1:CAS:528:DyaL1cXkvFKjurk%3D Occurrence Handle10.2475/ajs.288.6.537

    Article  CAS  Google Scholar 

  • J.W. Morse F.J. Millero J.C. Cornwell D. Rickard (1987) ArticleTitleThe chemistry of the hydrogen sulfide and iron sulfide systems in natural waters Earth-Sci. Rev. 24 1–42 Occurrence Handle1:CAS:528:DyaL2sXkt1Oqtbo%3D

    CAS  Google Scholar 

  • C.J. Murphy (1996) ArticleTitleCdS nanoclusters stabilized by thiolate ligands: A mini-review J. Cluster Sci. 7 341–350 Occurrence Handle10.1007/BF01171187 Occurrence Handle1:CAS:528:DyaK28XmtFOktrY%3D

    Article  CAS  Google Scholar 

  • J.M. Nedeljkovic R.C. Patel P. Kaufman C. Joyce-Pruden N. O’Leary (1993) ArticleTitleSynthesis and optical properties of quantum-size metal sulfide particles in aqueous solution J. Chem. Ed. 70 342–345 Occurrence Handle1:CAS:528:DyaK3sXkslWrt7Y%3D

    CAS  Google Scholar 

  • A. Pasquarello I. Petri P.S. Salmon O. Parisel R. Car E. Toth D.H. Powell H.E. Fischer L. Helm A.E. Merbach (2001) ArticleTitleFirst solvation shell of the Cu(II) aqua ion: Evidence for fivefold coordination Science 291 856–859 Occurrence Handle10.1126/science.291.5505.856 Occurrence Handle1:CAS:528:DC%2BD3MXpslKjtA%3D%3D

    Article  CAS  Google Scholar 

  • R.A.D. Pattrick J.F.W. Mosselmans J.M. Charnock K.E.R. England G.R. Helz C.D. Garner D.J. Vaughan (1997) ArticleTitleThe structure of amorphous copper sulfide precipitates: An X-ray absorption study Geochim. Cosmochim. Acta 61 2023–2036 Occurrence Handle10.1016/S0016-7037(97)00061-6 Occurrence Handle1:CAS:528:DyaK2sXjsFamtrw%3D

    Article  CAS  Google Scholar 

  • M. Posfai P.R. Buseck D.A. Bazylinski R.B. Frankel (1998) ArticleTitleIron sulfides from magnetotactic bacteria: Structure, composition, and phase transitions Am. Mineral. 83 1469–1481 Occurrence Handle1:CAS:528:DyaK1cXnvV2lsr4%3D

    CAS  Google Scholar 

  • J. Radford-Knoery G.A. Cutter (1994) ArticleTitleBiogeochemistry of dissolved hydrogen sulfide species and carbonyl sulfide in the western North Atlantic Ocean Geochim. Cosmochim. Acta 58 5421–5431 Occurrence Handle1:CAS:528:DyaK2MXivVCmurk%3D

    CAS  Google Scholar 

  • D. Rickard (1989) ArticleTitleExperimental concentration-time curves for the iron(II) sulphide precipitation process in aqueous solutions and their interpretation Chem. Geol. 78 315–324 Occurrence Handle10.1016/0009-2541(89)90066-1 Occurrence Handle1:CAS:528:DyaK3cXht1agsbk%3D

    Article  CAS  Google Scholar 

  • D. Rickard (1995) ArticleTitleKinetics of FeS precipitation: Part I. competing reaction mechanisms Geochim. Cosmochim. Acta 59 4367–4379 Occurrence Handle10.1016/0016-7037(95)00251-T Occurrence Handle1:CAS:528:DyaK2MXpsFSgt7Y%3D

    Article  CAS  Google Scholar 

  • D. Rickard T. Oldroyd A. Cramp (1999) ArticleTitleVoltammetric evidence for soluble FeS complexes in anoxic estuarine muds Estuaries 22 693–701 Occurrence Handle1:CAS:528:DyaK1MXntlCks74%3D

    CAS  Google Scholar 

  • D.T. Richens (1997) The Chemistry of Aqua Ions: Synthesis, Structure, and Reactivity: A Tour through the Periodic Table of the Elements John Wiley New York 592

    Google Scholar 

  • Rouxel J., M. Tournoux & R. Brec (eds), 1994. Soft chemistry routes to new materials. Proceedings of the International Symposium on Soft Chemistry Routes to New Materials, Nantes, France, September 1993. Materials Science Forum, Vol. 152–153, 422 pp

  • T. Rozan G. Benoit G.W. Luther SuffixIII (1999) ArticleTitleMeasuring metal sulfide complexes in oxic river waters with square wave voltammetry Environ. Sci. Technol. 33 3021–3026 Occurrence Handle1:CAS:528:DyaK1MXksFSnsb0%3D

    CAS  Google Scholar 

  • T.F. Rozan M.E. Lassman D.P. Ridge G.W. Luther SuffixIII (2000) ArticleTitleEvidence for Fe, Cu and Zn complexation as multinuclear sulfide clusters in oxic river waters Nature 406 879–882 Occurrence Handle10.1038/35022561 Occurrence Handle1:CAS:528:DC%2BD3cXmsVGisbc%3D

    Article  CAS  Google Scholar 

  • Rozan T.F. & G.W. Luther III, 2002 Voltammetric evidence suggesting Ag speciation is dominated by sulfide complexation in river water. In: Taillefert M. & Rozan T. eds. Environmental Electrochemistry: Analyses of Trace Element Biogeochemistry. American Chemical Society Symposium Series; American Chemical Society: Washington, DC, Ch. 19, Vol. 811, pp. 371–380

  • T.F. Rozan G.W. Luther SuffixIII D. Ridge S. Robinson (2003) ArticleTitleDetermination of Pb complexation in oxic and sulfidic waters using pseudovoltammetry Environ. Sci. Technol. 37 3845–3852 Occurrence Handle10.1021/es034014r Occurrence Handle1:CAS:528:DC%2BD3sXlslegur4%3D

    Article  CAS  Google Scholar 

  • M.A.A. Schoonen H.L. Barnes (1988) ArticleTitleAn approximation of the second dissociation constant for H2S Geochim. Cosmochim. Acta 52 649–654 Occurrence Handle10.1016/0016-7037(88)90326-2 Occurrence Handle1:CAS:528:DyaL1cXhslSqt70%3D

    Article  CAS  Google Scholar 

  • E.J. Silvester F. Grieser B.A. Sexton T.W. Healy (1991) ArticleTitleSpectroscopic studies on copper sulfide sols Langmuir 7 2917–2922 Occurrence Handle1:CAS:528:DyaK3MXms1CitLk%3D

    CAS  Google Scholar 

  • K. Sooklal B.S. Cullum S.M. Angel C.J. Murphy (1996) ArticleTitlePhotophysical properties of ZnS nanoclusters with spatially localized Mn2+ J. Phys. Chem. 100 4551–4555 Occurrence Handle10.1021/jp952377a Occurrence Handle1:CAS:528:DyaK28Xht1Wmsro%3D

    Article  CAS  Google Scholar 

  • Stumm W., 1992. Chemistry of the Solid-Water Interface. John Wiley & Sons Inc., New York, 428 pp

  • M. Taillefert V.C. Hover T.F. Rozan S.M. Theberge G.W. Luther SuffixIII (2002) ArticleTitleThe influence of sulfides on soluble Fe(III) in anoxic sediment porewaters Estuaries 25 1088–1096 Occurrence Handle1:CAS:528:DC%2BD3sXht1yjtL8%3D Occurrence Handle10.1007/BF02692206

    Article  CAS  Google Scholar 

  • S.M. Theberge G.W. Luther SuffixIII (1997) ArticleTitleDetermination of the electrochemical properties of a soluble aqueous FeS cluster present in sulfidic systems Aquat. Geochem. 3 191–211 Occurrence Handle10.1023/A:1009648026806 Occurrence Handle1:CAS:528:DyaK1cXit1Kju7c%3D

    Article  CAS  Google Scholar 

  • F.G. Vazquez J. Zhang F.J. Millero (1989) ArticleTitleEffect of metals on the rate of the oxidation of H2S in seawater Geophys. Res. Lett. 16 1363–1366

    Google Scholar 

  • T. Vossmeyer G. Reck L. Katsikas E.T.K. Haupt B. Schulz H. Weller (1995) ArticleTitleA “double-diamond superlattice” built of Cd17S4(SCH2CH2OH)26 clusters Science 267 1476–1479 Occurrence Handle1:CAS:528:DyaK2MXktlClt7k%3D

    CAS  Google Scholar 

  • I. Weissbuch L. Addadi M. Lahav L. Leiserowitz (1991) ArticleTitleMolecular recognition at crystal interfaces Science 253 637–645 Occurrence Handle1:CAS:528:DyaK3MXlsVKkurY%3D

    CAS  Google Scholar 

  • Wells A.F., 1986. Structural Inorganic Chemistry. 5th edn. Clarendon, Oxford, 1382 pp

  • M. Wolthers S.J. Van der Gaast D. Rickard (2003) ArticleTitleThe structure of disordered mackinawite Am. Mineral. 88 2007–2015 Occurrence Handle1:CAS:528:DC%2BD3sXpsV2gs70%3D

    CAS  Google Scholar 

  • C. Zee Particlevan der D.R. Roberts D.G. Rancourst C.P. Slomp (2003) ArticleTitleNanogoethite is the dominant oxyhydroxide phase in lake and marine sediments Geology 31 993–996

    Google Scholar 

  • H. Zhang B. Gilbert F. Huang J.F. Banfield (2003) ArticleTitleWater-driven structure transformation in nanoparticles at room temperature Nature 424 1025–1029 Occurrence Handle1:CAS:528:DC%2BD3sXmslSjsbk%3D

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George W. Luther III.

Additional information

An erratum to this article is available at http://dx.doi.org/10.1007/s11051-005-3140-6.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Luther, G.W., Rickard, D.T. Metal Sulfide Cluster Complexes and their Biogeochemical Importance in the Environment. J Nanopart Res 7, 389–407 (2005). https://doi.org/10.1007/s11051-005-4272-4

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11051-005-4272-4

Keywords

Navigation