Skip to main content
Log in

Global memory schemes for dynamic optimization

  • Published:
Natural Computing Aims and scope Submit manuscript

Abstract

Nowadays, it is common to find research problems (in system biology, mobile applications, etc.) that change over time, requiring algorithms which dynamically adapt the search to the new conditions. In most of them, the utilization of some information from the past allows to quickly adapt after a change. This is the idea underlining the use of memory in this field, what involves key design issues concerning the memory content, the process of update, and the process of retrieval. In this article, we focus on global memory schemes, which are the most intuitive and popular ones, and perform an integral analysis of current design variants based on a comprehensive set of benchmarks. Results show the benefits and drawbacks of each strategy, as well as the effect of the algorithm and problem features in the memory performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Alba E, Nakib A, Siarry P (2013) Metaheuristics for dynamic optimization. Springer, Berlin

    Book  Google Scholar 

  • Bendtsen CN, Krink T (2002) Dynamic memory model for non-stationary optimization. In: IEEE congress on evolutionary computation, pp 145–150

  • Bosman PAN (2007) Learning and anticipation in online dynamic optimization. In: Yang S, Ong YS, Jin Y (eds) Evol comput in dynamic and uncertain environments. Springer, Berlin, pp 129–152

    Chapter  Google Scholar 

  • Branke J (1999) Memory enhanced evolutionary algorithms for changing optimization problems. In: IEEE congress on evolutionary computation, vol 3, pp 1875–1882

  • Branke J, Kaußler T, Schmidt C, Schmeck H (2000) A multipopulation approach to dynamic optimization problems. Adaptive comp in design and manufacturing. LNCS, Springer, Berlin

    Google Scholar 

  • Brest J, Zamuda A, Boskovic B, Maucec MS, Zumer V (2009) Dynamic optimization using self-adaptive differential evolution. IEEE Congr Evol Comput. doi:10.1109/CEC.2009.4982976

    Google Scholar 

  • Cao Y, Luo W (2010) A novel updating strategy for associative memory scheme in cyclic dynamic environments. In: International Workshop on Advanced Computational Intelligence. Suzhou, pp 32–39

  • Cobb HG (1990) An investigation into the use of hypermutation as an adaptive operator in genetic algorithms having continuous, time-dependent nonstationary environments. NAVAL RESEARCH LAB, Washington

    Google Scholar 

  • Eggermont J, Lenaerts T, Poyhonen S, Termier A (2001) Raising the dead: extending evolutionary algorithms with a case-based memory. In: Miller JF et al (eds) Genetic Programming. Proc of EuroGP. Springer, Berlin, pp 280–290

    Chapter  Google Scholar 

  • Eshelman LJ, Schaffer JD (1993) Real-coded genetic algorithms and interval-schemata. In: Whitley LD (ed) Foundations of Genetic Algorithms 2. Morgan Kaufmann, Los Altos, pp 187–202

    Google Scholar 

  • Goldberg DE, Smith RE (1987) Nonstationary function optimization using genetic algorithms with dominance and diploidy. In: International conference on genetic algorithms. Morgan Kaufmann, Los Altos, pp 59–68

  • Grefenstette JJ (1992) Genetic algorithms for changing environments. In: Maenner R, Manderick B (eds) Parallel problem solving from nature. North-Holland, Amsterdam, pp 137–144

    Google Scholar 

  • Halder U, Das S, Maity D (2013) A cluster-based differential evolution algorithm with external archive for optimization in dynamic environments. IEEE Trans Cybern 43(3):881–897

    Article  Google Scholar 

  • Jin Y, Branke J (2005) Evolutionary optimization in uncertain environments—a survey. IEEE Trans Evol Comput 9(3):303–317

    Article  Google Scholar 

  • Kennedy J, Eberhart R (1995) Particle swarm optimization. In: IEEE international conference on neural networks. vol 4, pp 1942–1948. doi:10.1109/ICNN.1995.488968

  • Lepagnot J, Nakib A, Oulhadj H, Siarry P (2013) A multiple local search algorithm for continuous dynamic optimization. J Heuristics 19(1):35–76

    Article  Google Scholar 

  • Lewis EHJ, Ritchie G (1998) A comparison of dominance mechanisms and simple mutation on non-stationary problems. In: Parallel problem solving from nature. Springer, Berlin, pp 139–148

  • Li C, Yang S, Nguyen TT, Yu EL, Yao X, Jin Y, Beyer H-G, Suganthan PN (2008) Benchmark generator for CEC 2009 competition on dynamic optimization. Technical Report. University of Leicester and University of Birmingham, UK

  • Li C, Yang S, Alej D, Pelta R (2011) Benchmark generator for the IEEE WCCI-2012 competition on evolutionary computation for dynamic optimization problems. Technical Report. University of Leicester and University of Birmingham, UK

  • Louis SJ, Xu Z (1996) Genetic algorithms for open shop scheduling and re-scheduling. In: Proceedings of the 11th international conference on computers and their application, ISCA, Winona, MN, pp 99–102

  • Lozano M, Herrera F, Krasnogor N, Molina D (2004) Real-coded Memetic Algorithms with crossover hill-climbing. Evol Comput 12(3):273–302

    Article  Google Scholar 

  • Maurice C Standard PSO 2007 (Spso-07) Tech Report [online] http://www.particleswarm.info/Programs.html

  • Mavrovouniotis M, Yang S (2012) Ant colony optimization with memory-based immigrants for the dynamic vehicle routing problem. In: IEEE congress on evolutionary computation, pp 1–8

  • Mori N, Kita H, Nishikawa Y (1997) Adaptation to changing environments by means of the memory based thermodynamical genetic algorithm. Int Conf on Genetic Algorithms. Morgan Kaufmann, Los Altos, pp 299–306

    Google Scholar 

  • Muhlenbein H, Schlierkamp-Voosen D (1993) Predictive models for the breeder genetic algorithm I. continuous parameter optimization. Evol Comput 1:25–49

    Article  Google Scholar 

  • Ng KP, Wong KC (1997) A new diploid scheme and dominance change mechanism for non-stationary function optimisation. Int Conf Genetic Algorithms. Morgan Kaufmann, Los Altos, pp 159–166

    Google Scholar 

  • Nguyen TT, Yang S, Branke J (2012) Evolutionary dynamic optimization: a survey of the state of the art. Swarm Evol Comput 6:1–24. doi:10.1016/j.swevo.2012.05.001

    Article  Google Scholar 

  • Richter H, Yang S (2008) Memory based on abstraction for dynamic fitness functions. In: Giacobini M et al (eds) Applications of Evolutionary Computing, vol LNCS 4974. Springer, Berlin, pp 596–605

    Chapter  Google Scholar 

  • Richter H, Yang S (2009) Learning behavior in abstract memory schemes for dynamic optimization problems. Soft Comput 13(12):1163–1173

    Article  MATH  Google Scholar 

  • Simões A, Costa E (2007) Improving memory’s usage in evolutionary algorithms for changing environments. In: IEEE congress on evolutionary computation, pp 276–283

  • Simões A, Costa E (2008) Evolutionary algorithms for dynamic environments: prediction using linear regression and Markov chains. In: Parallel problem solving from nature. Springer, Berlin, vol 5199, pp 306–315

  • Simões A, Costa E (2011) Memory-based CHC algorithms for the dynamic traveling salesman problem. Genetic and evolutionary computation conference (GECCO). ACM, New York, pp 1037–1044

    Google Scholar 

  • Trojanowski K, Michalewicz Z (1999) Searching for optima in non-stationary environments. In: Congress on evolutionary computation. Washington, DC, pp 1843–1850

  • Tseng L Y, Chen C (2008) Multiple trajectory search for large scale global optimization. In: IEEE congress on evolutionary computation, pp 3052–3059

  • Wang H, Yang S, Ip WH, Wang D (2012) A memetic particle swarm optimisation algorithm for dynamic multi-modal optimisation problems. Int J Syst Sci 43(7):1268–1283

    Article  MathSciNet  MATH  Google Scholar 

  • Wineberg M, Oppacher F (2003) A linear time algorithm for determining population diversity in evolutionary computation. Intell Syst Control. Salzburg, Austria, pp 270–275

    Google Scholar 

  • Woldesenbet YG, Yen GG (2009) Dynamic evolutionary algorithm with variable relocation. IEEE Trans Evol Comput 13(3):500–513

    Article  Google Scholar 

  • Yang S (2003) Non-stationary problem optimization using the primal-dual genetic algorithm. Congr Evol Comput 3:2246–2253

    Google Scholar 

  • Yang S (2005a) Memory-enhanced univariate marginal distribution algorithms for dynamic optimization problems. Congr Evol Comput. doi:10.1109/CEC.2005.1555015

    Google Scholar 

  • Yang S (2005b) Memory-based immigrants for genetic algorithms in dynamic environments. In: Proceedings of the 2005 genetic and evolutionary computation conference, GECCO–05, ACM, New York, NY, pp 1115–1122

  • Yang S (2007) Explicit memory schemes for evolutionary algorithms in dynamic environments. In: Yang S, Yew-Soon, Jin Y (eds) Evolutionary computation in dynamic and uncertain environments. doi:10.1007/978-3-540-49774-5_1

  • Yang S (2008) Genetic algorithms with memory and elitism-based immigrants in dynamic environments. IEEE Trans Evol Comput. doi:10.1162/evco.2008.16.3.385

    Google Scholar 

  • Yang S, Li C (2010) A clustering particle swarm optimizer for locating and tracking multiple optima in dynamic environments. IEEE Trans Evol Comput. doi:10.1109/TEVC.2010.2046667

    Google Scholar 

  • Yang S, Yao X (2005) Experimental study on population-based incremental learning algorithms for dynamic optimization problems. Soft Comput. doi:10.1007/s00500-004-0422-3

    MATH  Google Scholar 

  • Yang S, Yao X (2008) Population-based incremental learning with associative memory for dynamic environments. IEEE Trans Evol Comput. doi:10.1109/TEVC.2007.913070

    Google Scholar 

  • Zhu T, Luo W, Li Z (2011) An adaptive strategy for updating the memory in evolutionary algorithms for dynamic optimization. In: IEEE symposium on computational intelligence in dynamic and uncertain environments, pp 8–15

Download references

Acknowledgments

Authors acknowledge funds from the Spanish Ministry of Sciences and Innovation European FEDER, from the International Campus of Excellence Andalucía Tech, University of Malaga, and from the VSB-Technical University of Ostrava.

Ethical Standard

We here ensure that there is no conflicts of interest, nor sensible human/animal information has been used in this article. We declare partial funding of this work by project number 8.06/5.47.4142 in collaboration with the VSB-Technical University of Ostrava) and UMA/FEDER project FC14-TIC36.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yesnier Bravo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bravo, Y., Luque, G. & Alba, E. Global memory schemes for dynamic optimization. Nat Comput 15, 319–333 (2016). https://doi.org/10.1007/s11047-015-9497-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11047-015-9497-2

Keywords

Navigation