Skip to main content
Log in

MALDI-TOF Mass Spectrometry: Any Use for Aspergilli?

  • Published:
Mycopathologia Aims and scope Submit manuscript

Abstract

Recently, relentless efforts to develop rapid, cost-effective, and reliable laboratory methods for daily diagnosis of fungal diseases such as aspergillosis appear to be materialized in the relatively new, but revolutionary matrix-assisted laser desorption ionization-time-of-flight (MALDI-TOF) mass spectrometry (MS) technology. As for Aspergilli, MALDI-TOF MS profiling of isolates growing in culture—characteristic protein spectra are obtainable by means of simple and reproducible preanalytical and analytical procedures—ensures that single species within the different sections or complexes can be easily and accurately identified, including species that are morphologically and phylogenetically similar to each other. Thus, resort to longer and more onerous molecular biology techniques is restricted to those cases for which no spectra in the reference fungal database or library are available at the time of analysis. However, it is necessary to interrogate reference libraries composed of spectra that have been obtained using procedures similar to those used to obtain the test isolate’s mass spectrum, as well as to continuously update these libraries for enriching them with fungal strains/species not (or not well) represented in their current versions. Compared to mold identification, very limited work was reported on the use of MALDI-TOF MS to perform strain typing or antifungal susceptibility testing for Aspergilli. If these complementing areas will be potentiated in the near future, MALDI-TOF MS could effectively support the clinical microbiology/mycology laboratory in its primary role of assisting either infection control specialists or physicians for the diagnosis and treatment of aspergillosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Miceli MH, Lee SA. Emerging moulds: epidemiological trends and antifungal resistance. Mycoses. 2011;54:e666–78.

    Article  PubMed  Google Scholar 

  2. Posteraro B, Torelli R, De Carolis E, Posteraro P, Sanguinetti M. Update on the laboratory diagnosis of invasive fungal infections. Mediterr J Hematol Infect Dis. 2011;3:e2011002.

    Article  PubMed Central  PubMed  Google Scholar 

  3. Balajee SA, Nickle D, Varga J, Marr KA. Molecular studies reveal frequent misidentification of Aspergillus fumigatus by morphotyping. Eukaryot Cell. 2006;5:1705–12.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Borman AM, Johnson EM. Genomics and proteomics as compared to conventional phenotypic approaches for the identification of the agents of invasive fungal infections. Curr Fungal Infect Rep. 2013;7:235–43.

    Article  Google Scholar 

  5. Lau A, Chen S, Sleiman S, Sorrell T. Current status and future perspectives on molecular and serological methods in diagnostic mycology. Future Microbiol. 2009;4:1185–222.

    Article  CAS  PubMed  Google Scholar 

  6. Kliem M, Sauer S. The essence on mass spectrometry based microbial diagnostics. Curr Opin Microbiol. 2012;15:397–402.

    Article  CAS  PubMed  Google Scholar 

  7. Geiser DM, Klich MA, Frisvad JC, Peterson SW, Varga J, Samson RA. The current status of species recognition and identification in Aspergillus. Stud Mycol. 2007;59:1–10.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Balajee SA, Houbraken J, Verweij PE, Hong SB, Yaghuchi T, Varga J, Samson RA. Aspergillus species identification in the clinical setting. Stud Mycol. 2007;59:39–46.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Balajee SA, Borman AM, Brandt ME, Cano J, Cuenca-Estrella M, Dannaoui E, Guarro J, Haase G, Kibbler CC, Meyer W, O’Donnell K, Petti CA, Rodriguez-Tudela JL, Sutton D, Velegraki A, Wickes BL. Sequence-based identification of Aspergillus, Fusarium, and Mucorales species in the clinical mycology laboratory: where are we and where should we go from here? J Clin Microbiol. 2009;47:877–84.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Samson RA, Varga J. What is a species in Aspergillus? Med Mycol. 2009;47(Suppl 1):S13–20.

    Article  CAS  PubMed  Google Scholar 

  11. Johnson EM, Borman AM. Identification of Aspergillus at the species level: the importance of conventional methods; microscopy and culture. In: Pasqualotto Alessandro, editor. Aspergillus and Aspergillosis. New York: Springer; 2009. p. 55–74.

    Google Scholar 

  12. Hawksworth DL. Pandora’s mycological box: molecular sequences vs. morphology in understanding fungal relationships and biodiversity. Rev Iberoam Micol. 2006;23:127–33.

    Article  PubMed  Google Scholar 

  13. van der Linden JW, Warris A, Verweij PE. Aspergillus species intrinsically resistant to antifungal agents. Med Mycol. 2011;49(Suppl 1):S82–9.

    Article  Google Scholar 

  14. Balajee SA, Kano R, Baddley JW, Moser SA, Marr KA, Alexander BD, Andes D, Kontoyiannis DP, Perrone G, Peterson S, Brandt ME, Pappas PG, Chiller T. Molecular identification of Aspergillus species collected for the Transplant-Associated Infection Surveillance Network. J Clin Microbiol. 2009;47:3138–41.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Ostrosky-Zeichner L. Invasive mycoses: diagnostic challenges. Am J Med. 2012;125(Suppl 1):S14–24.

    Article  PubMed  Google Scholar 

  16. Klich MA. Identification of clinically relevant aspergilli. Med Mycol. 2006;44(Suppl 1):S127–31.

    Article  Google Scholar 

  17. Krishnan S, Manavathu EK, Chandrasekar PH. Aspergillus flavus: an emerging non-fumigatus Aspergillus species of significance. Mycoses. 2009;52:206–22.

    Article  CAS  PubMed  Google Scholar 

  18. Chang PK, Ehrlich KC. What does genetic diversity of Aspergillus flavus tell us about Aspergillus oryzae? Int J Food Microbiol. 2010;138:189–99.

    Article  CAS  PubMed  Google Scholar 

  19. Varga J, Frisvad JC, Samson RA. Two new aflatoxin producing species, and an overview of Aspergillus section Flavi. Stud Mycol. 2011;69:57–80.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Tam EW, Chen JH, Lau EC, Ngan AH, Fung KS, Lee KC, Lam CW, Yuen KY, Lau SK, Woo PC. Misidentification of Aspergillus nomius and Aspergillus tamarii as Aspergillus flavus: characterization by internal transcribed spacer, β-tubulin, and calmodulin gene sequencing, metabolic fingerprinting, and matrix-assisted laser desorption ionization-time of flight mass spectrometry. J Clin Microbiol. 2014;52:1153–60.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Seng P, Drancourt M, Gouriet F, La Scola B, Fournier PE, Rolain JM, Raoult D. Ongoing revolution in bacteriology: routine identification of bacteria by matrix-assisted laser desorption ionization time-of-flight mass spectrometry. Clin Infect Dis. 2009;49:543–51.

    Article  CAS  PubMed  Google Scholar 

  22. Clark AE, Kaleta EJ, Arora A, Wolk DM. Matrix-assisted laser desorption ionization-time of flight mass spectrometry: a fundamental shift in the routine practice of clinical microbiology. Clin Microbiol Rev. 2013;26:547–603.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Patel R. Matrix-assisted laser desorption ionization-time of flight mass spectrometry in clinical microbiology. Clin Infect Dis. 2013;57:564–72.

    Article  PubMed  Google Scholar 

  24. Posteraro B, De Carolis E, Vella A, Sanguinetti M. MALDI-TOF mass spectrometry in the clinical mycology laboratory: identification of fungi and beyond. Expert Rev Proteomics. 2013;10:151–64.

    Article  CAS  PubMed  Google Scholar 

  25. Vermeulen E, Verhaegen J, Indevuyst C, Lagrou K. Update on the evolving role of MALDI-TOF MS for laboratory diagnosis of fungal infections. Curr Fungal Infect Rep. 2012;6:206–14.

    Article  Google Scholar 

  26. Welker M. Proteomics for routine identification of microorganisms. Proteomics. 2011;11:3143–53.

    Article  CAS  PubMed  Google Scholar 

  27. Santos C, Paterson RR, Venâncio A, Lima N. Filamentous fungal characterizations by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. J Appl Microbiol. 2010;108:375–85.

    Article  CAS  PubMed  Google Scholar 

  28. Cassagne C, Ranque S, Normand AC, Fourquet P, Thiebault S, Planard C, Hendrickx M, Piarroux R. Mould routine identification in the clinical laboratory by matrix-assisted laser desorption ionization time-of-flight mass spectrometry. PLoS ONE. 2011;6:e28425.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Normand AC, Cassagne C, Ranque S, L’ollivier C, Fourquet P, Roesems S, Hendrickx M, Piarroux R. Assessment of various parameters to improve MALDI-TOF MS reference spectra libraries constructed for the routine identification of filamentous fungi. BMC Microbiol. 2013;13:76.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Bader O. MALDI-TOF-MS-based species identification and typing approaches in medical mycology. Proteomics. 2013;13:788–99.

    Article  CAS  PubMed  Google Scholar 

  31. Bille E, Dauphin B, Leto J, Bougnoux ME, Beretti JL, Lotz A, Suarez S, Meyer J, Join-Lambert O, Descamps P, Grall N, Mory F, Dubreuil L, Berche P, Nassif X, Ferroni A. MALDI-TOF MS Andromas strategy for the routine identification of bacteria, mycobacteria, yeasts, Aspergillus spp. and positive blood cultures. Clin Microbiol Infect. 2012;18:1117–25.

    Article  CAS  PubMed  Google Scholar 

  32. Iriart X, Lavergne RA, Fillaux J, Valentin A, Magnaval JF, Berry A, Cassaing S. Routine identification of medical fungi by the new Vitek MS matrix-assisted laser desorption ionization-time of flight system with a new time-effective strategy. J Clin Microbiol. 2012;50:2107–10.

    Article  PubMed Central  PubMed  Google Scholar 

  33. Lau AF, Drake SK, Calhoun LB, Henderson CM, Zelazny AM. Development of a clinically comprehensive database and a simple procedure for identification of molds from solid media by matrix-assisted laser desorption ionization-time of flight mass spectrometry. J Clin Microbiol. 2013;51:828–34.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Alanio A, Beretti JL, Dauphin B, Mellado E, Quesne G, Lacroix C, Amara A, Berche P, Nassif X, Bougnoux ME. Matrix-assisted laser desorption ionization time-of-flight mass spectrometry for fast and accurate identification of clinically relevant Aspergillus species. Clin Microbiol Infect. 2011;17:750–5.

    Article  CAS  PubMed  Google Scholar 

  35. De Carolis E, Posteraro B, Lass-Flörl C, Vella A, Florio AR, Torelli R, Girmenia C, Colozza C, Tortorano AM, Sanguinetti M, Fadda G. Species identification of Aspergillus, Fusarium and Mucorales with direct surface analysis by matrix-assisted laser desorption ionization time-of-flight mass spectrometry. Clin Microbiol Infect. 2012;18:475–84.

    Article  PubMed  Google Scholar 

  36. Gibbons JG, Salichos L, Slot JC, Rinker DC, McGary KL, King JG, Klich MA, Tabb DL, McDonald WH, Rokas A. The evolutionary imprint of domestication on genome variation and function of the filamentous fungus Aspergillus oryzae. Curr Biol. 2012;22:1403–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Li TY, Liu BH, Chen YC. Characterization of Aspergillus spores by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Rapid Commun Mass Spectrom. 2000;14:2393–400.

    Article  CAS  PubMed  Google Scholar 

  38. Hettick JM, Green BJ, Buskirk AD, Kashon ML, Slaven JE, Janotka E, Blachere FM, Schmechel D, Beezhold DH. Discrimination of Aspergillus isolates at the species and strain level by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry fingerprinting. Anal Biochem. 2008;380:276–81.

    Article  CAS  PubMed  Google Scholar 

  39. Eschenauer GA, Carver PL. The evolving role of antifungal susceptibility testing. Pharmacotherapy. 2013;33:465–75.

    Article  CAS  PubMed  Google Scholar 

  40. Pfaller MA. Antifungal drug resistance: mechanisms, epidemiology, and consequences for treatment. Am J Med. 2012;125(Suppl 1):S3–13.

    Article  CAS  PubMed  Google Scholar 

  41. Vermeulen E, Lagrou K, Verweij PE. Azole resistance in Aspergillus fumigatus: a growing public health concern. Curr Opin Infect Dis. 2013;26:493–500.

    Article  CAS  PubMed  Google Scholar 

  42. Posteraro B, Torelli R, De Carolis E, Posteraro P, Sanguinetti M. Antifungal susceptibility testing: current role from the clinical laboratory perspective. Mediterr J Hematol Infect Dis. 2014;6:e2014030.

    Article  PubMed Central  PubMed  Google Scholar 

  43. Kostrzewa M, Sparbier K, Maier T, Schubert S. MALDI-TOF MS: an upcoming tool for rapid detection of antibiotic resistance in microorganisms. Proteomics Clin Appl. 2013;7:767–78.

    Article  CAS  PubMed  Google Scholar 

  44. Marinach C, Alanio A, Palous M, Kwasek S, Fekkar A, Brossas JY, Brun S, Snounou G, Hennequin C, Sanglard D, Datry A, Golmard JL, Mazier D. MALDI-TOF MS-based drug susceptibility testing of pathogens: the example of Candida albicans and fluconazole. Proteomics. 2009;9:4627–31.

    Article  CAS  PubMed  Google Scholar 

  45. De Carolis E, Vella A, Florio AR, Posteraro P, Perlin DS, Sanguinetti M, Posteraro B. Use of matrix-assisted laser desorption ionization-time of flight mass spectrometry for caspofungin susceptibility testing of Candida and Aspergillus species. J Clin Microbiol. 2012;50:2479–83.

    Article  PubMed Central  PubMed  Google Scholar 

  46. Hoehamer CF, Cummings ED, Hilliard GM, Rogers PD. Changes in the proteome of Candida albicans in response to azole, polyene, and echinocandin antifungal agents. Antimicrob Agents Chemother. 2010;54:1655–64.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Vella A, De Carolis E, Vaccaro L, Posteraro P, Perlin DS, Kostrzewa M, Posteraro B, Sanguinetti M. Rapid antifungal susceptibility testing by matrix-assisted laser desorption ionization-time of flight mass spectrometry analysis. J Clin Microbiol. 2013;51:2964–9.

    Article  PubMed Central  PubMed  Google Scholar 

  48. Lass-Flörl C. In vitro susceptibility testing in Aspergillus species: an update. Future Microbiol. 2010;5:789–99.

    Article  PubMed  Google Scholar 

  49. Verweij PE, Howard SJ, Melchers WJ, Denning DW. Azole-resistance in Aspergillus: proposed nomenclature and breakpoints. Drug Resist Updat. 2009;12:141–7.

    Article  CAS  PubMed  Google Scholar 

  50. Carolis ED, Hensgens LA, Vella A, Posteraro B, Sanguinetti M, Senesi S, Tavanti A. Identification and typing of the Candida parapsilosis complex: MALDI-TOF MS vs. AFLP Med Mycol. 2014;52:123–30.

    Article  Google Scholar 

  51. Pulcrano G, Roscetto E, Iula VD, Panellis D, Rossano F, Catania MR. MALDI-TOF mass spectrometry and microsatellite markers to evaluate Candida parapsilosis transmission in neonatal intensive care units. Eur J Clin Microbiol Infect Dis. 2012;31:2919–28.

    Article  CAS  PubMed  Google Scholar 

  52. Firacative C, Trilles L, Meyer W. MALDI-TOF MS enables the rapid identification of the major molecular types within the Cryptococcus neoformans/C. gattii species complex. PLoS ONE. 2012;7:e37566.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  53. Posteraro B, Vella A, Cogliati M, De Carolis E, Florio AR, Posteraro P, Sanguinetti M, Tortorano AM. Matrix-assisted laser desorption ionization-time of flight mass spectrometry-based method for discrimination between molecular types of Cryptococcus neoformans and Cryptococcus gattii. J Clin Microbiol. 2012;50:2472–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  54. van der Linden JW, Camps SM, Kampinga GA, Arends JP, Debets-Ossenkopp YJ, Haas PJ, Rijnders BJ, Kuijper EJ, van Tiel FH, Varga J, Karawajczyk A, Zoll J, Melchers WJ, Verweij PE. Aspergillosis due to voriconazole highly resistant Aspergillus fumigatus and recovery of genetically related resistant isolates from domiciles. Clin Infect Dis. 2013;57:513–20.

    Article  PubMed  Google Scholar 

  55. Mancini N, Burioni R, Sanguinetti M, Clementi M. Risks of “blind” automated identification systems in medical microbiology. J Clin Microbiol. 2013;51:3911.

    Article  PubMed Central  PubMed  Google Scholar 

  56. Westblade LF, Jennemann R, Branda JA, Bythrow M, Ferraro MJ, Garner OB, Ginocchio CC, Lewinski MA, Manji R, Mochon AB, Procop GW, Richter SS, Rychert JA, Sercia L, Burnham CA. Reply to “risks of ‘blind’ automated identification systems in medical microbiology”. J Clin Microbiol. 2013;51:3912.

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maurizio Sanguinetti.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sanguinetti, M., Posteraro, B. MALDI-TOF Mass Spectrometry: Any Use for Aspergilli?. Mycopathologia 178, 417–426 (2014). https://doi.org/10.1007/s11046-014-9757-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11046-014-9757-1

Keywords

Navigation