Skip to main content

Advertisement

Log in

Amentoflavone Stimulates Mitochondrial Dysfunction and Induces Apoptotic Cell Death in Candida albicans

  • Published:
Mycopathologia Aims and scope Submit manuscript

Abstract

Amentoflavone was isolated from an ethyl acetate extract of the whole plant of Selaginella tamariscina. It is a traditional herb for the therapy of chronic trachitis and exhibits some anti-tumor activity. Previously, we confirmed the antifungal effects of amentoflavone. The objective of this study was to investigate the antifungal mechanism(s) of amentoflavone, such as mitochondria-mediated apoptotic cell death. The cells that were treated with amentoflavone exhibited a series of cellular changes that were consistent with apoptosis: externalization of phosphatidylserine, DNA and nuclear fragmentation, accumulation of intracellular reactive oxygen species (ROS) and hydroxyl radicals, and activation of metacaspase. In addition, diagnostic markers of apoptosis, including the reduction of mitochondrial inner-membrane potential and the release of cytochrome c from mitochondria, were observed. These phenomena are important changes in mitochondria-mediated apoptosis. Furthermore, the effect of thiourea as hydroxyl radical scavenger on amentoflavone-induced apoptosis was evaluated. A hydroxyl radical is a more active ROS species. Mitochondrial dysfunction was inhibited, which was indicated by decreased levels of intracellular hydroxyl radicals. Taken together, our results present the first evidence that amentoflavone induces apoptosis in C. albicans cells and is associated with the mitochondrial dysfunction. Besides, amentoflavone-induced hydroxyl radicals may play a significant role in mitochondria-mediated apoptosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

ROS:

Reactive oxygen species

DHR-123:

Dihydrorhodamine

HPF:

2-[6-(4′-hydroxy) phenoxy-3H-xanthen-3-on-9-yl] benzoic acid

DAPI:

4′-6-Diamidino-2-phenylindole

TUNEL:

Terminal deoxynucleotidyl transferase dUTP nick end labeling

DiOC6(3):

3,3′-Dihexyloxacarbocyanine iodide

AMB:

Amphotericin B

PI:

Propidium iodide

References

  1. Chiou CC, Groll AH, Walsh TJ. New drugs and novel targets for treatment of invasive fungal infections in patients with cancer. Oncologist. 2000;5:120–2.

    Article  PubMed  CAS  Google Scholar 

  2. Cowen LE, Anderson JB, Kohn LM. Evolution of drug resistance in Candida albicans. Annu Rev Microbiol. 2002;56:139–65.

    Article  PubMed  CAS  Google Scholar 

  3. Gislene GFN, Juliana L, Paulo CF, Giuliana LS. Antibacterial activity of plant extracts and phytochemicals on antibiotic resistant bacteria. Braz J Microbiol. 2000;31:247–56.

    Google Scholar 

  4. Khan ZS, Nasreen S. Phytochemical analysis, antifungal activity and mode of action of methanol extracts from plants against pathogens. J Agric Technol. 2010;6:793–805.

    Google Scholar 

  5. Phillips AJ, Sudbery I, Ramsdale M. Apoptosis induced by environmental stresses and amphotericin B in Candida albicans. Proc Natl Acad Sci USA. 2003;100:14327–32.

    Article  PubMed  CAS  Google Scholar 

  6. Phillips AJ, Crowe JD, Ramsdale M. Ras pathway signaling accelerates programmed cell death in the pathogenic fungus Candida albicans. Proc Natl Acad Sci USA. 2006;103:726–31.

    Article  PubMed  CAS  Google Scholar 

  7. Wu XZ, Chang WQ, Cheng AX, Sun LM, Lou HX. Plagiochin E, an antifungal active macrocyclic bis(bibenzyl), induced apoptosis in Candida albicans through a metacaspase-dependent apoptotic pathway. Biochim Biophys Acta. 2010;1800:439–47.

    Article  PubMed  CAS  Google Scholar 

  8. Gambhir SS, Goel RK, Das Gupta G. Anti-inflammatory and anti-ulcerogenic activity of amentoflavone. Indian J Med Res. 1987;85:689–93.

    PubMed  CAS  Google Scholar 

  9. Lin LC, Kuo YC, Chou CJ. Cytotoxic Biflavonoids from Selaginella delicatula. J Nat Prod. 2000;63:627–30.

    Article  PubMed  CAS  Google Scholar 

  10. Jung HJ, Sung WS, Yeo SH, Kim HS, Lee IS, Woo ER, Lee DG. Antifungal effect of amentoflavone derived from Selaginella tamariscina. Arch Pharm Res. 2006;9:746–51.

    Article  Google Scholar 

  11. Silva GL, Chai H, Gupta MP, Farnsworth NR, Cordell GA, Pezzuto JM, Beecher CW, Kinghorn AD. Cytotoxic biflavonoids from Selaginella willdenowii. Phytochemistry. 1995;40:129–34.

    Article  PubMed  CAS  Google Scholar 

  12. Markham KR, Sheppard C, Geiger H. 13C NMR studies of some naturally occurring amentoflavone and hinokiflavone biflavonoids. Phytochemistry. 1987;26:3335–7.

    Article  CAS  Google Scholar 

  13. Jung HJ, Park K, Lee IS, Kim HS, Yeo SH, Woo ER, Lee DG. S-phase accumulation of Candida albicans by anticandidal effect of amentoflavone isolated from Selaginella tamariscina. Biol Pharm Bull. 2007;10:1969–71.

    Article  Google Scholar 

  14. Schiller M, Blank N, Heyder P, Herrmann M, Gaipl US, Kalden JR, Lorenz HM. Induction of apoptosis by spermine-metabolites in primary human blood cells and various tumor cell lines. Apotosis. 2005;10:1151–62.

    Article  CAS  Google Scholar 

  15. Heatwole VM. TUNEL assay for apoptotic cells. Methods Mol Biol. 1999;115:141–8.

    PubMed  CAS  Google Scholar 

  16. Park C, Lee DG. Melittin induces apoptotic features in Candida albicans. Biochem Biophys Res Commun. 2010;394:170–2.

    Article  PubMed  CAS  Google Scholar 

  17. Michael P, John JR, Ann MS, David K. Monitoring singlet oxygen and hydroxyl radical formation with fluorescent probes during photodynamic therapy. Photochem Photobiol. 2009;85:1177–81.

    Article  Google Scholar 

  18. Matthew W, Barry H. Thiourea and dimethyl thiourea inhibit peroxynitrite-dependent damage: nonspecificity as hydroxyl radical scavengers. Free Radic Biol Med. 1997;22:1309–12.

    Article  Google Scholar 

  19. Niimi K, Harding DR, Parshot R, King A, Lun DJ, Decottignies A, Niimi M, Lin S, Cannon RD, Goffeau A, Monk BC. Chemosensitization of fluconazole resistance in Saccharomyces cerevisiae and pathogenic fungi by a D-octapeptide derivative. Antimicrob Agents Chemother. 2004;48:1256–71.

    Article  PubMed  CAS  Google Scholar 

  20. Dumont ME, Schlichter JB, Cardillo TS, Hayes MK, Bethlendy G, Sherman F. CYC2 encodes a factor involved in mitochondrial import of cytochrome c. Mol Cell Biol. 1993;13:6442–51.

    PubMed  CAS  Google Scholar 

  21. N’cho M, Brahmi Z. Evidence that Fas-induced apoptosis leads to S phase arrest. Hum Immunol. 2001;62:310–9.

    Article  PubMed  Google Scholar 

  22. Iguchi T, Miyakawa Y, Saito K, Nakabayashi C, Nakanishi M, Saya H, Ikeda Y, Kizaki M. Zoledronate-induced S phase arrest and apoptosis accompanied by DNA damage and activation of the ATM/Chk1/cdc25 pathway in human osteosarcoma cells. Int J Oncol. 2007;31:285–91.

    PubMed  CAS  Google Scholar 

  23. Madeo F, Frohlich E, Frohlich KU. A yeast mutant showing diagnostic markers of early and late apoptosis. J Cell Biol. 1997;139:729–34.

    Article  PubMed  CAS  Google Scholar 

  24. Cabiscol E, Piulats E, Echave P, Herrero E, Ros J. Oxidative stress promotes specific protein damage in Saccharomyces cerevisiae. J Biol Chem. 2000;275:27393–8.

    PubMed  CAS  Google Scholar 

  25. Ribeiro GF, Côrte-Real M, Johansson B. Characterization of DNA damage in yeast apoptosis induced by hydrogen peroxide, acetic acid, and hyperosmotic shock. Mol Biol Cell. 2006;17:4584–91.

    Article  PubMed  CAS  Google Scholar 

  26. Ludovico P, Sousa MJ, Silva MT, Leao C, Corte-Real M. Saccharomyces cerevisiae commits to a programmed cell death process in response to acetic acid. Microbiology. 2001;147:2409–15.

    PubMed  CAS  Google Scholar 

  27. Frohlich KU, Madeo F. Apoptosis in yeast-a monocellular organism exhibits altruistic behavior. FEBS Lett. 2000;473:6–9.

    Article  PubMed  CAS  Google Scholar 

  28. Madeo F, Fröhlich E, Ligr M, Grey M, Sigrist SJ, Wolf DH, Fröhlich KU. Oxygen stress: a regulator of apoptosis in yeast. J Cell Biol. 1999;145:757–67.

    Article  PubMed  CAS  Google Scholar 

  29. Sakurada H, Koizumi H, Ohkawara A, Ueda T, Kamo N. Use of dihydrorhodamine 123 for detecting intracellular generation of peroxides upon UV irradiation in epidermal keratinocytes. Arch Dermatol Res. 1992;284:114–6.

    Article  PubMed  CAS  Google Scholar 

  30. Haruna S, Kuroi R, Kajiwara K, Hashimoto R, Matsugo S, Tokumaru S, Kojo S. Induction of apoptosis in HL-60 cells by photochemically generated hydroxyl radicals. Bioorg Med Chem Lett. 2002;12:675–6.

    Article  PubMed  CAS  Google Scholar 

  31. Zivna L, Krocova Z, Härtlova A, Kubelkova K, Zakova J, Rudolf E, Hrstka R, Macela A, Stulik J. Activation of B cell apoptotic pathways in the course of Francisella tularensis infection. Microb Pathog. 2010;49:226–36.

    Article  PubMed  CAS  Google Scholar 

  32. Barroso G, Taylor S, Morshedi M, Manzur F, Gaviño F, Oehninger S. Mitochondrial membrane potential integrity and plasma membrane translocation of phosphatidylserine as early apoptotic markers: a comparison of two different sperm subpopulations. Fertil Steril. 2006;85:149–54.

    Article  PubMed  CAS  Google Scholar 

  33. Vayssiere JL, Petit PX, Risler Y, Mignotte B. Commitment to apoptosis is associated with changes in mitochondrial biogenesis and activity in cell lines conditionally immortalized with simian virus 40. Proc Natl Acad Sci USA. 1994;91:11752–6.

    Article  PubMed  CAS  Google Scholar 

  34. Zamzami N, Marchetti P, Castedo M, Hirsch T, Susin SA, Masse B, Kroemer G. Inhibitors of permeability transition interfere with the disruption of the mitochondrial transmembrane potential during apoptosis. FEBS Lett. 1996;384:53–7.

    Article  PubMed  CAS  Google Scholar 

  35. Douma S, Van Laar T, Zevenhoven J, Meuwissen R, Van Garderen E, Peeper DS. Suppression of anoikis and induction of metastasis by the neurotrophic receptor TrkB. Nature. 2004;430:1034–9.

    Article  PubMed  CAS  Google Scholar 

  36. Duval R, Bellet V, Delebassée S, Bosgiraud C. Implication of caspases during maedi-visna virus-induced apoptosis. J Gen Virol. 2002;83:3153–61.

    PubMed  CAS  Google Scholar 

  37. Smrz D, Dráberová L, Dráber P. Non-apoptotic phosphatidylserine externalization induced by engagement of glycosylphosphatidylinositol-anchored proteins. J Biol Chem. 2007;282:10487–97.

    Article  PubMed  CAS  Google Scholar 

  38. Pozniakovsky AJ, Knorre DA, Markova OV, Hyman AA, Skulachev VP, Severin FF. Role of mitochondria in the pheromone- and amiodarone-induced programmed cell death of yeast. J Cell Biol. 2005;168:257–69.

    Article  PubMed  CAS  Google Scholar 

  39. Ludovico P, Rodrigues F, Almeida A, Silva MT, Barrientos A, Côrte-Real M. Cytochrome c release and mitochondria involvement in programmed cell death induced by acetic acid in saccharomyces cerevisiae. Mol Biol Cell. 2002;13:2598–606.

    Article  PubMed  CAS  Google Scholar 

  40. Benaroudj N, Lee DH, Goldberg AL. Trehalose accumulation during cellular stress protects cells and cellular proteins from damage by oxygen radicals. J Biol Chem. 2001;276:24261–7.

    Article  PubMed  CAS  Google Scholar 

  41. Liang J, Wu WL, Liu ZH, Mei YJ, Cai RX, Shen P. Study the oxidative injury of yeast cells by NADH autofluorescence. Spectrochim Acta A Mol Biomol Spectrosc. 2007;67:355–9.

    Article  PubMed  Google Scholar 

  42. Novogrodsky A, Ravid A, Rubin AL, Stenzel KH. Hydroxyl radical scavengers inhibit lymphocyte mitogenesis. Proc Natl Acad Sci USA. 1982;79:1171–4.

    Article  PubMed  CAS  Google Scholar 

  43. Repine JE, Fox RB, Berger EM. Hydrogen peroxide kills Staphylococcus aureus by reacting with staphylococcal iron to form hydroxyl radical. J Biol Chem. 1981;256:7094–6.

    PubMed  CAS  Google Scholar 

  44. Touati D, Jacques M, Tardat B, Bouchard L, Despied S. Lethal oxidative damage and mutagenesis are generated by iron in delta fur mutants of Escherichia coli: protective role of superoxide dismutase. J Bacteriol. 1995;177:2305–14.

    PubMed  CAS  Google Scholar 

  45. Pereira C, Camougrand N, Manon S, Sousa MJ, Côrte-Real M. ADP/ATP carrier is required for mitochondrial outer membrane permeabilization and cytochrome c release in yeast apoptosis. Mol Microbiol. 2007;66:571–82.

    Article  PubMed  CAS  Google Scholar 

  46. Adrian C, Martin SJ. The mitochondrial apoptosome: a killer unleashed by the cytochrome seas. Trends Biochem Sci. 2001;26:390–7.

    Article  Google Scholar 

  47. Desagher S, Martinou JC. Mitochondria as the central control point of apoptosis. Trends Cell Biol. 2000;10:369–77.

    Article  PubMed  CAS  Google Scholar 

  48. Vander Heiden MG, Chandel NS, Williamson EK, Schumacker PT, Thompson CB. Bcl-xL regulates the membrane potential and volume homeostasis of mitochondria. Cell. 1997;91:627–37.

    Article  PubMed  CAS  Google Scholar 

  49. Chen Q, Takeyama N, Brady G, Watson AJM, Dive C. Blood cells with reduced mitochondrial membrane potential and cytosolic cytochrome c can survive and maintain clonogenity given appropriate signals to suppress apoptosis. Blood. 1998;92:4545–53.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MEST) (No. 2011-0000915).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong Gun Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hwang, Is., Lee, J., Jin, HG. et al. Amentoflavone Stimulates Mitochondrial Dysfunction and Induces Apoptotic Cell Death in Candida albicans . Mycopathologia 173, 207–218 (2012). https://doi.org/10.1007/s11046-011-9503-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11046-011-9503-x

Keywords

Navigation