Skip to main content

Advertisement

Log in

Distribution Coefficients of Dietary Sugars in Artificial Candida Biofilms

  • Published:
Mycopathologia Aims and scope Submit manuscript

Abstract

Candida species are the most important fungal pathogens in humans and cause a variety of superficial and systemic diseases. Biofilm formation is a major virulence attribute contributing to Candida pathogenicity. Although the concentration and distribution of nutrients as well as antifungals across the biofilm thickness play a pivotal role in the development and persistence of Candida biofilms, only limited information is available on the latter aspects of Candida biofilms. Therefore, we attempted to characterize the diffusion coefficient (De) of common dietary sugars such as glucose, galactose, and sucrose in Candida albicans biofilms using horizontal attenuated total reflection-Fourier transform infrared spectroscopy (HATR-FTIR). Artificial Candida biofilms were formed using agarose polymers. De of three sugars tested, glucose, galactose, and sucrose in this artificial Candida biofilm model was found to be 4.08E-06 ± 3.63E-08, 4.08E-06 ± 3.70E-08, and 5.38E-06 ± 4.52E-08 cm2 s−1, respectively. We demonstrate here the utility of HATR-FTIR for the determination of diffusion of solutes such as dietary sugars across Candida biofilms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Samaranayake LP, MacFarlane TW. Oral candidosis. London: Wright; 1990.

    Google Scholar 

  2. Beck-Sague C, Jarvis WR. Secular trends in the epidemiology of nosocomial fungal infections in the United States, 1980–1990 national nosocomial infections surveillance system. J Infect Dis. 1993;167:1247–51.

    PubMed  CAS  Google Scholar 

  3. Wenzel RP, Gennings C. Bloodstream infections due to Candida species in the intensive care unit: identifying especially high-risk patients to determine prevention strategies. Clin Infect Dis. 2005;41:S389–93. doi:10.1086/430923.

    Article  PubMed  Google Scholar 

  4. Ramage G, Martinez JP, Lopez-Ribot JL. Candida biofilms on implanted biomaterials: a clinically significant problem. Fems Yeast Research. 2006;6:979–86. doi:10.1111/j.1567-1364.2006.00117.x.

    Article  PubMed  CAS  Google Scholar 

  5. Hawser SP, Douglas LJ. Biofilm formation by Candida species on the surface of catheter materials in vitro. Infect Immun. 1994;62:915–21.

    PubMed  CAS  Google Scholar 

  6. Jin Y, Samaranayake LP, Samaranayake Y, Yip HK. Biofilm formation of Candida albicans is variably affected by saliva and dietary sugars. Archi Oral Biol. 2004;49:789–98. doi:10.1016/j.archoralbio.2004.04.011.

    Article  CAS  Google Scholar 

  7. Nikawa H, Hamada T, Yamamoto T, Kumagai H. Effects of salivary or serum pellicles on the Candida albicans growth and biofilm formation on soft lining materials in vitro. J Oral Rehabil. 1997;24:594–604. doi:10.1046/j.1365-2842.1997.00539.x.

    Article  PubMed  CAS  Google Scholar 

  8. Fang HH, Zhang M, Zhang T, Chen J. Predictions of nitrate diffusion in sediment using horizontal attenuated total reflection (HATR) by Fourier transform infrared (FTIR) spectrometry. Water Res. 2008;42:903–8. doi:10.1016/j.watres.2007.08.038.

    Article  PubMed  CAS  Google Scholar 

  9. Zhang T, Fang HHP. Effective diffusion coefficients of glucose in artificial biofilms. Environ Technol. 2005;26:155–60. doi:10.1080/09593332608618574.

    Article  PubMed  Google Scholar 

  10. Beuling EE, van den Heuvel JC, Ottengraf SPP. Diffusion coefficients of metabolites in active biofilms. Biotechnol Bioeng. 2000;67:53–60. doi:10.1002/(SICI)1097-0290(20000105)67:1<53::AID-BIT6>3.0.CO;2-H.

    Article  PubMed  CAS  Google Scholar 

  11. Vrany JD, Stewart PS, Suci PA. Comparison of recalcitrance to ciprofloxacin and levofloxacin exhibited by Pseudomonas aeruginosa bofilms displaying rapid-transport characteristics. Antimicrob Agents Chemother. 1997;41:1352–8.

    PubMed  CAS  Google Scholar 

  12. Suci PA, Geesey GG, Tyler BJ. Integration of Raman microscopy, differential interference contrast microscopy, and attenuated total reflection Fourier transform infrared spectroscopy to investigate chlorhexidine spatial and temporal distribution in Candida albicans biofilms. J Microbiol Methods. 2001;46:193–208. doi:10.1016/S0167-7012(01)00268-8.

    Article  PubMed  CAS  Google Scholar 

  13. Al-Fattani MA, Douglas LJ. Penetration of Candida biofilms by antifungal agents. Antimicrob Agents Chemother. 2004;48:3291–7. doi:10.1128/AAC.48.9.3291-3297.2004.

    Article  PubMed  CAS  Google Scholar 

  14. Chresand TJ, Dale BE, Hanson SL, Gillies RJ. A stirred bath technique for diffusivity measurements in cell matrices. Biotechnol and Bioeng. 1988;32:1029–36. doi:10.1002/bit.260320810.

    Article  CAS  Google Scholar 

  15. Jouenne T, Tresse O, Junter GA. Agar-entrapped bacteria as an in vitro model of biofilms and their susceptibility to antibiotics. FEMS Microbiol Lett. 1994;119:237–42. doi:10.1111/j.1574-6968.1994.tb06894.x.

    Article  PubMed  CAS  Google Scholar 

  16. Bremer PJ, Geesey GG. Laboratory-based model of microbiologically induced corrosion of copper. Appl Environ Microbiol. 1991;57:1956–62.

    PubMed  CAS  Google Scholar 

  17. Nichols PD, Henson JM, Guckert JB, Nivens DE, White DC. Fourier transform-infrared spectroscopic methods for microbial ecology: analysis of bacteria, bacteria-polymer mixtures and biofilms. J Microbiol Methods. 1985;4:79–94. doi:10.1016/0167-7012(85)90023-5.

    Article  PubMed  CAS  Google Scholar 

  18. Jin Y, Yip HK, Samaranayake YH, Yau JY, Samaranayake LP. Biofilm-forming a ability of Candida albicans is unlikely to contribute to high levels of oral yeast carriage in cases of human immunodeficiency virus infection. J Clin Microbiol. 2003;41:2961–7. doi:10.1128/JCM.41.7.2961-2967.2003.

    Article  PubMed  CAS  Google Scholar 

  19. Seneviratne CJ, Jin LJ, Samaranayake YH, Samaranayake LP. Cell density and cell aging as factors modulating antifungal resistance of Candida albicans biofilms. Antimicrob Agents Chemother. 2008;52:3259–66. doi:10.1128/AAC.00541-08.

    Article  PubMed  CAS  Google Scholar 

  20. Samaranayake LP, MacFarlane TW. The effect of dietary carbohydrates on the in vitro adhesion of Candida albicans to epithelial cells. J Med Microbiol. 1982;15:511–7.

    Article  PubMed  CAS  Google Scholar 

  21. Seneviratne CJ, Jin L, Samaranayake LP. Biofilm lifestyle of Candida: a mini review. Oral Dis. 2008;14:582–90. doi:10.1111/j.1601-0825.2007.01424.x.

    Article  PubMed  CAS  Google Scholar 

  22. Coquet L, Junter GA, Jouenne T. Resistance of artificial biofilms of Pseudomonas aeruginosa to imipenem and tobramycin. J Antimicrobial Chemother. 1998;42:755–60. doi:10.1093/jac/42.6.755.

    Article  CAS  Google Scholar 

  23. Suci PA, Mittelman MW, Yu FP, Geesey GC. Investigation of ciprofloxacin penetration into Pseudomonas aeruginosa biofilms. Antimicrob Agents Chemother. 1994;38:2125–33.

    PubMed  CAS  Google Scholar 

  24. Suci PA, Siedlecki KJ, Palmer RJ, White DC, Geesey GC. Combined light microscopy and attenuated total reflection Fourier transform infrared spectroscopy for integration of biofilm structure, distribution, and chemistry at solid–liquid interfaces. Appl Environ Microbiol. 1997;63:4600–3.

    PubMed  CAS  Google Scholar 

  25. Strathmann M, Griebe T, Flemming HC. Artificial biofilm model—a useful tool for biofilm research. Appl Microbiol Biotechnol. 2000;54:231–7. doi:10.1007/s002530000370.

    Article  PubMed  CAS  Google Scholar 

  26. Al-Fattani MA, Douglas LJ. Biofilm matrix of Candida albicans and Candida tropicalis: chemical composition and role in drug resistance. J Med Microbiol. 2006;55:999–1008. doi:10.1099/jmm.0.46569-0.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Hong Kong Research Grants Council, RGC No. HKU 7624/06M.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. P. Samaranayake.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Seneviratne, C.J., Zhang, T., Fang, H.H.P. et al. Distribution Coefficients of Dietary Sugars in Artificial Candida Biofilms. Mycopathologia 167, 325–331 (2009). https://doi.org/10.1007/s11046-009-9184-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11046-009-9184-x

Keywords

Navigation