Skip to main content
Log in

Low-complexity 2D parameter estimation of coherently distributed noncircular signals using modified propagator

  • Published:
Multidimensional Systems and Signal Processing Aims and scope Submit manuscript

Abstract

In this paper, a new algorithm is proposed for two-dimensional parameter estimation of coherently distributed noncircular signals. Based on the special sensor array geometry of L-shaped uniform linear arrays, 2D angular parameters are obtained independently by using the modified propagator method. Specifically, two selection matrices are employed to obtain rotation invariance matrices under considering signal noncircularity. By making use of the rotation invariance matrices, we then obtain the central elevation and azimuth direction-of-arrivals, respectively. After that, the pair-matching of them is accomplished by searching the minimums of a cost function of the estimated 2D angular parameters. Finally, numerical results to testify the effectiveness of the proposed algorithm are provided. It is also shown that the proposed algorithm performs well in a wide signal-to-noise ratio range.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abeida, H., & Delmas, J. (2006). MUSIC-like estimation of direction of arrival for noncircular sources. IEEE Transactions on Signal Processing, 54(7), 2678–2690.

    Article  Google Scholar 

  • Cao, J. W., Khong, W. H., & Gannot, S. (2014). On the performance of widely linear Quaternion based MVDR beamformer for an acoustic vector sensor. In Proceedings of the International Workshop on Acoustic Signal Enhancement (IWAENC) (pp. 304–308).

  • Cao, J. W., & Lin, Z. P. (2014). Bayesian signal detection with compressed measurements. Information Sciences, 289, 241–253.

    Article  MATH  Google Scholar 

  • Cao, J. W. (2014). Survey on acoustic vector sensor and its applications in signal processing. In Proceedings of the 33rd Chinese Control Conference (CCC) (pp. 7456–7461).

  • Chevalier, P., & Blin, A. (2007). Widely linear MVDR beamformers for the reception of an unknown signal corrupted by noncircular interferences. IEEE Transactions on Signal Processing, 55(11), 5323–5336.

    Article  MathSciNet  Google Scholar 

  • Gan, L., Gu, J., & Wei, P. (2008). Estimation of 2-D DOA for noncircular sources using simultaneous SVD technique. IEEE Antennas Wireless Propagation Letter, 7, 385–388.

    Article  Google Scholar 

  • Gao F., Wang, Y., & Nallanathan, A. (2006). Improved MUSIC by exploiting both real and complex sources. In MILCOM (pp. 1–6).

  • Gounon, P., Adnet, C., & Galy, J. (1998). Localization angulaire de signaux non circulaires. Traitement du Signal, 15(1), 17–23.

    MATH  Google Scholar 

  • Guo, X. S., Wan, Q., Chang, C. Q., et al. (2010). Source localization using a sparse representation framework to achieve superresolution. Multidimensional Systems and Signal Processing, 21(4), 391–402.

    Article  MathSciNet  MATH  Google Scholar 

  • Jazzar, S., Muchkaev, A., Nimrat, A., & Smad, M. (2011). Low complexity and high accuracy angle of arrival estimation using eigenvalue decomposition with extension to 2D AOA and power estimation. EURASIP Journal on Wireless Communications and Networking, 1(123), 1–13.

    Google Scholar 

  • Monakov, A. (2000). Observation of extended targets with antenna arrays. IEEE Transactions on Aerospace and Electronic Systems, 36(1), 297–302.

    Article  Google Scholar 

  • Richard, R., & Kailath, T. (1989). ESPRIT-estimation of signal parameters via rotational invariance techniques. IEEE Transactions on Acoustics, Speech and Signal Processing, 37(7), 984–995.

    Article  Google Scholar 

  • Shahbazpanahi, S., Valaee, S., & Bastani, M. H. (2001). Distributed source localization using ESPRIT algorithm. IEEE Transactions on Signal Processing, 49(10), 2169–2178.

    Article  MATH  Google Scholar 

  • Trump, T., & Ottersten, B. (1996). Estimation of nominal direction of arrival and angular spread using an array of sensors. Signal Processing, 50(1), 57–69.

    Article  MATH  Google Scholar 

  • Valaee, S., Champagne, B., & Kabal, P. (1995). Parametric localization of distributed sources. IEEE Transactions on Signal Processing, 43(9), 2144–2153.

    Article  Google Scholar 

  • Wang, G., Xin, J., & Zheng, N. (2011). Computationally efficient subspace-based method for two-dimensional direction estimation with L-shaped array. IEEE Transactions on Signal Processing, 59(7), 3197–3212.

    Article  MathSciNet  Google Scholar 

  • Wu, Q., Wong, K., & Meng, Y. (1994). DOA Estimation of point and scattered sources-Vec-MUSIC. In IEEE Signal Processing Workshop on SSAP (pp. 365–368).

  • Xu, Y. G., & Liu, Z. W. (2007). Closed-form multiple invariance ESPRIT. Multidimensional Systems and Signal Processing, 18(1), 47–54.

    Article  MATH  Google Scholar 

  • Yang, X., Li, G., & Zheng, Z. (2013). Low-complexity 2D DOA estimator of coherently distributed noncircular sources. In International Conference on Wireless Communications and Signal Processing (WCSP) (pp. 1–5).

  • Zhang, X. F., Li, J. F., & Xu, L. Y. (2011). Novel two-dimensional DOA estimation with L-shaped array. EURASIP Journal on Advances in Signal Processing, 50, 1–7.

    Article  Google Scholar 

  • Zheng, Z., & Li, G. (2012). 2D DOA estimator for multiple coherently distributed sources using modified propagator. Circuits, Systems, and Signal Processing, 31(1), 255–270.

    Article  MathSciNet  MATH  Google Scholar 

  • Zheng, Z., Li, G., & Teng, Y. (2012). Simplified estimation of 2D DOA for coherently distributed sources. Wireless Personal Communication, 62(4), 907–922.

    Article  Google Scholar 

  • Zhou, L. (2014). A new method for the 2D DOA estimation of coherently distributed sources. Sensors & Transducers, 167(3), 110–116.

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank the editors and the anonymous reviewers for their detailed comments and suggestions. This work was supported by the National Natural Science Foundation of China (Grant No. 61301155 and 61176025), the Fundamental Research Funds (the Central Universities Project No. ZYGX2012J003 and ZYGX2014J001) and CSC (No. 201406070066).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuemin Yang.

Appendices

Appendix 1

In this appendix, we show the analytical expression of \(\mathbf{c}\left( {\psi _k } \right) \) and \(\bar{{\mathbf{c}}}\left( {\psi _k } \right) \). For simplicity, we neglect the subscript k in the following derivation.

In order to present the analytical expression of \(\mathbf{c}\left( \psi \right) \), we consider \(g(\vartheta ,\varphi ;\psi )\) is Cauchy distribution, and can be expressed as

$$\begin{aligned} g(\vartheta ,\varphi ;\psi )=\left\{ {\begin{array}{ll} \frac{1}{\pi ^{2}}\left( {\frac{\Delta _\theta \Delta _{\phi } }{\left( {(\vartheta -\theta )^{2}+\Delta _\theta ^2 } \right) \left( {(\varphi -\phi )^{2}+\Delta _{\phi } ^2 } \right) }} \right) ,&{}\quad \left| {\varphi -\phi } \right| >\varepsilon _\varphi ,\;\; \left| {\vartheta -\theta } \right| > \varepsilon _\theta \\ 0,&{}\quad \left| {\varphi -\phi } \right| <\varepsilon _\varphi ,\;\;\left| {\vartheta -\theta } \right| <\varepsilon _\theta \\ \end{array}} \right. \end{aligned}$$
(47)

where \(\varepsilon _\theta \) and \(\varepsilon _\varphi \) are small values associated with \(\Delta _\theta \) and \(\Delta _{\phi } \), respectively. For arbitrary \(\theta \) and \(\varphi \), we define \(\vartheta =\theta +\tilde{\theta }\) and \(\varphi =\phi +\tilde{\phi }\), where \(\tilde{\theta }\) and \(\tilde{\phi }\) are the small deviations. Assume that \(g(\vartheta ;\psi )\) and \(g(\varphi ;\psi )\) are independent identity distribution, \(\int _0^\pi {g(\vartheta ;\psi )} d\vartheta =1\), and \(\int _0^\pi {g(\varphi ;\psi )} d\varphi =1\).

Inserting (47) into (6), the mth element \(\left[ {\mathbf{c}\left( \psi \right) } \right] _m \), \(m=1,2,\ldots ,M\) of \(\mathbf{c}\left( {\psi _k } \right) \) can be expressed as

$$\begin{aligned} \left[ \mathbf{c}\left( \psi \right) \right] _m= & {} \int _0^\pi \int _0^\pi e^{-j\pi (m-1)\cos (\tilde{\theta } +\theta )} \frac{1}{\pi ^{2}}\frac{\Delta _\theta }{\tilde{\theta }^{2}+\Delta _\theta ^2 } \frac{\Delta _{\phi } }{\tilde{\phi }^{2}+\Delta _{\phi } ^2 }d \tilde{\theta }d\tilde{\phi } \nonumber \\= & {} \frac{1}{\pi }\;e^{-j\pi (m-1)\cos (\tilde{\theta }+\theta )}\int _0^\pi e^{-j\pi (m-1)\tilde{\theta }\sin \theta }\frac{\Delta _\theta }{\tilde{\theta }^{2}+\Delta _\theta ^2 }d\tilde{\theta } \nonumber \\= & {} e^{-j\pi (m-1)\cos \theta }e^{-\pi (m-1)\left| {\Delta _\theta \sin \theta } \right| } \nonumber \\= & {} \left[ {\mathbf{a}(\theta )} \right] _m \left[ {\mathbf{w}(\psi )} \right] _m \end{aligned}$$
(48)

where \(\left[ {\mathbf{w}(\psi )} \right] _m =e^{-\pi (m-1)\left| {\Delta _\theta \sin \theta } \right| }\), and \(\mathbf{w}(\psi )\) is real-valued vector. It is important to note that \(\mathbf{c}\left( \psi \right) \) and \(\mathbf{a}(\theta )\) have the same phase.

In the similar way to obtain the analytical expression of \(\bar{{\mathbf{c}}}\left( \psi \right) \), the mth element \(\left[ {\bar{{\mathbf{c}}}\left( \psi \right) } \right] _m \) of \(\bar{{\mathbf{c}}}\left( \psi \right) \) can be expressed as

$$\begin{aligned} \left[ {\bar{{\mathbf{c}}}\left( \psi \right) } \right] _m= & {} \int _0^\pi {\int _0^\pi {e^{-j\pi (m-1) \cos (\tilde{\phi }+\phi )}\frac{1}{\pi ^{2}} \frac{\Delta _{\phi } }{\tilde{\phi }^{2}+\Delta _{\phi } ^2 }\frac{\Delta _\theta }{\tilde{\theta }^{2}+ \Delta _\theta ^2 }} d\tilde{\theta }d\tilde{\phi }} \nonumber \\= & {} \frac{1}{\pi }e^{-j\pi (m-1)\cos \phi } \int _0^\pi {e^{-j\pi (m-1)\tilde{\phi }\sin \phi } \frac{\Delta _{\phi } }{\tilde{\phi }^{2}+\Delta _{\phi } ^2 }d\tilde{\phi }} \nonumber \\= & {} e^{-j\pi (m-1)\cos \phi }e^{-\pi (m-1) \left| {\Delta _{\phi } \sin \phi } \right| } \nonumber \\= & {} \left[ {\mathbf{b}(\phi )} \right] _m \left[ {\mathbf{v}(\psi )} \right] _m \end{aligned}$$
(49)

where \(\left[ {\mathbf{v}(\psi )} \right] _m =e^{-\pi (m-1)\left| {\Delta _{\phi } \sin \phi } \right| }\), and \(\mathbf{v}(\psi )\) is also a real-valued vector. Note that \(\bar{{\mathbf{c}}}\left( \psi \right) \) and \(\mathbf{b}(\phi )\) have the same phase.

Appendix 2

From (42), we partition \(\mathbf{Q}\) into two submatrices as

$$\begin{aligned} \mathbf{Q}= \left[ \begin{array}{c} \mathbf{Q}_1 \\ \mathbf{Q}_2 \\ \end{array} \right] \begin{array}{c} {\left. \right\} } \\ {\left. \right\} } \\ \end{array} \begin{array}{c} {2M} \\ {2M} \\ \end{array} \end{aligned}$$
(50)

where \(\mathbf{Q}_1 \) and \(\mathbf{Q}_2 \) are both \(2M\times (4M-K)\) matrices consisting of the first 2M and the last 2M rows of \(\mathbf{Q}\).

Substituting (50) into (42), we have

$$\begin{aligned} f(\psi ,\mu )= & {} \mathbf{d}^{H}(\psi ,\mu )\left[ {\begin{array}{c@{\quad }c} \mathbf{Q}_1 \mathbf{Q}_1^H &{} \mathbf{Q}_1 \mathbf{Q}_2^H \\ \mathbf{Q}_2 \mathbf{Q}_1^H &{} \mathbf{Q}_2 \mathbf{Q}_2^H \\ \end{array}} \right] \mathbf{d}(\psi ,\mu ) \nonumber \\= & {} \left[ {\begin{array}{c} \mathbf{d}_X (\psi ,\mu ) \\ \mathbf{d}_Y (\psi ,\mu ) \\ \end{array}} \right] ^{H}\left[ {\begin{array}{c@{\quad }c} \mathbf{Q}_1 \mathbf{Q}_1^H &{}\mathbf{Q}_1 \mathbf{Q}_2^H \\ \mathbf{Q}_2 \mathbf{Q}_1^H &{}\mathbf{Q}_2 \mathbf{Q}_2^H \\ \end{array}} \right] \left[ {\begin{array}{c} \mathbf{d}_X (\psi ,\mu ) \\ \mathbf{d}_Y (\psi ,\mu ) \\ \end{array}} \right] \nonumber \\= & {} \mathbf{d}_X^H (\psi ,\mu )\mathbf{Q}_1 \mathbf{Q}_1^H \mathbf{d}_X (\psi ,\mu )+\mathbf{d}_X^H (\psi ,\mu )\mathbf{Q}_1 \mathbf{Q}_2^H \mathbf{d}_Y (\psi ,\mu ) \nonumber \\&+\,\mathbf{d}_Y^H (\psi ,\mu )\mathbf{Q}_2 \mathbf{Q}_1^H \mathbf{d}_X (\psi ,\mu )+\mathbf{d}_Y^H (\psi ,\mu )\mathbf{Q}_2 \mathbf{Q}_2^H \mathbf{d}_Y (\psi ,\mu ) \nonumber \\= & {} F_1 +F_2 +F_3 +F_4 \end{aligned}$$
(51)

Let \(\mathbf{Q}_1 =[\mathbf{Q}_{11}^T ,\;\mathbf{Q}_{12}^T ]^{T}\) and \(\mathbf{Q}_2 =[\mathbf{Q}_{21}^T ,\;\mathbf{Q}_{22}^T ]^{T}\), and each part of (51) can be separately expressed as

$$\begin{aligned} F_1= & {} \left[ {\begin{array}{c} \mathbf{c}(\psi ) \\ \mathbf{c}^{*} (\psi )e^{-j\mu } \\ \end{array}} \right] ^H \left[ {\begin{array}{c@{\quad }c} \mathbf{Q}_{11} \mathbf{Q}_{11}^H &{}\mathbf{Q}_{11} \mathbf{Q}_{12}^H \\ \mathbf{Q}_{12} \mathbf{Q}_{11}^H &{}\mathbf{Q}_{12} \mathbf{Q}_{12}^H \\ \end{array}} \right] \left[ {\begin{array}{c} \mathbf{c}(\psi ) \\ \mathbf{c}^{*} (\psi )e^{-j\mu } \\ \end{array}} \right] \nonumber \\= & {} \left[ {\begin{array}{c} 1 \\ e^{-j\mu } \\ \end{array}} \right] ^H \left[ {\begin{array}{c@{\quad }c} \mathbf{c}^H (\psi )\mathbf{Q}_{11} \mathbf{Q}_{11}^H \mathbf{c}(\psi )&{} \mathbf{c}^H (\psi )\mathbf{Q}_{11} \mathbf{Q}_{12}^H \mathbf{c}^{*} (\psi ) \\ \mathbf{c}^T (\psi )\mathbf{Q}_{12} \mathbf{Q}_{11}^H \mathbf{c}(\psi )&{} \mathbf{c}^T (\psi )\mathbf{Q}_{12} \mathbf{Q}_{12}^H \mathbf{c}^{*} (\psi ) \\ \end{array}} \right] \left[ {\begin{array}{c} 1 \\ e^{-j\mu } \\ \end{array}} \right] \nonumber \\= & {} \left[ {\begin{array}{c} 1 \\ e^{-j\mu } \\ \end{array}} \right] ^H \left[ {\begin{array}{cc} F_{11} &{} F_{12} \\ F_{13} &{} F_{14} \\ \end{array}} \right] \left[ {\begin{array}{c} 1 \\ e^{-j\mu } \\ \end{array}} \right] \end{aligned}$$
(52)
$$\begin{aligned} F_2= & {} \left[ {\begin{array}{c} \mathbf{c}(\psi ) \\ \mathbf{c}^{*} (\psi )e^{-j\mu } \\ \end{array}} \right] ^H \left[ {\begin{array}{c@{\quad }c} \mathbf{Q}_{11} \mathbf{Q}_{21}^H &{} \mathbf{Q}_{11} \mathbf{Q}_{22}^H \\ \mathbf{Q}_{12} \mathbf{Q}_{21}^H &{} \mathbf{Q}_{12} \mathbf{Q}_{22}^H \\ \end{array}} \right] \left[ {\begin{array}{c} \bar{{\mathbf{c}}}(\psi ) \\ \bar{{\mathbf{c}}}^{*} (\psi )e^{-j\mu } \\ \end{array}} \right] \nonumber \\= & {} \left[ {\begin{array}{c} 1 \\ e^{-j\mu } \\ \end{array}} \right] ^H \left[ {\begin{array}{c@{\quad }c} \mathbf{c}^H (\psi )\mathbf{Q}_{11} \mathbf{Q}_{21}^H \bar{{\mathbf{c}}}(\psi )&{} \mathbf{c}^H (\psi )\mathbf{Q}_{11} \mathbf{Q}_{22}^H \bar{{\mathbf{c}}}^{*} (\psi ) \\ \mathbf{c}^T (\psi )\mathbf{Q}_{12} \mathbf{Q}_{21}^H \bar{{\mathbf{c}}}(\psi )&{} \mathbf{c}^T (\psi )\mathbf{Q}_{12} \mathbf{Q}_{22}^H \bar{{\mathbf{c}}}^{*} (\psi ) \\ \end{array}} \right] \left[ {\begin{array}{c} 1 \\ e^{-j\mu } \\ \end{array}} \right] \nonumber \\= & {} \left[ {\begin{array}{c} 1 \\ e^{-j\mu } \\ \end{array}} \right] ^H \left[ {\begin{array}{cc} F_{21} &{} F_{22} \\ F_{23} &{} F_{24} \\ \end{array}} \right] \left[ {\begin{array}{c} 1 \\ e^{-j\mu } \\ \end{array}} \right] \end{aligned}$$
(53)
$$\begin{aligned} F_3= & {} \left[ {\begin{array}{c} \bar{{\mathbf{c}}}(\psi ) \\ \bar{{\mathbf{c}}}^{*} (\psi )e^{-j\mu } \\ \end{array}} \right] ^H \left[ {\begin{array}{c@{\quad }c} \mathbf{Q}_{21} \mathbf{Q}_{11}^H &{} \mathbf{Q}_{21} \mathbf{Q}_{12}^H \\ \mathbf{Q}_{22} \mathbf{Q}_{11}^H &{} \mathbf{Q}_{22} \mathbf{Q}_{12}^H \\ \end{array}} \right] \left[ {\begin{array}{c} \mathbf{c}(\psi ) \\ \mathbf{c}^{*} (\psi )e^{-j\mu } \\ \end{array}} \right] \nonumber \\= & {} \left[ {\begin{array}{c} 1 \\ e^{-j\mu } \\ \end{array}} \right] ^H \left[ {\begin{array}{c@{\quad }c} \bar{{\mathbf{c}}}^H (\psi )\mathbf{Q}_{21} \mathbf{Q}_{11}^H \mathbf{c}(\psi ) &{} \bar{{\mathbf{c}}}^H (\psi )\mathbf{Q}_{21} \mathbf{Q}_{12}^H \mathbf{c}^{*} (\psi ) \\ \bar{{\mathbf{c}}}^T (\psi )\mathbf{Q}_{22} \mathbf{Q}_{11}^H \mathbf{c}(\psi ) &{} \bar{{\mathbf{c}}}^T (\psi )\mathbf{Q}_{22} \mathbf{Q}_{12}^H \mathbf{c}^{*} (\psi ) \\ \end{array}} \right] \left[ {\begin{array}{c} 1 \\ e^{-j\mu } \\ \end{array}} \right] \nonumber \\= & {} \left[ {\begin{array}{c} 1 \\ e^{-j\mu } \\ \end{array}} \right] ^H \left[ {\begin{array}{c@{\quad }c} F_{31} &{} F_{32} \\ F_{33} &{} F_{34} \\ \end{array}} \right] \left[ {\begin{array}{c} 1 \\ e^{-j\mu } \\ \end{array}} \right] \end{aligned}$$
(54)
$$\begin{aligned} F_4= & {} \left[ {\begin{array}{c} \bar{{\mathbf{c}}}(\psi ) \\ \bar{{\mathbf{c}}}^{*} (\psi )e^{-j\mu } \\ \end{array}} \right] ^H \left[ {\begin{array}{c@{\quad }c} \mathbf{Q}_{21} \mathbf{Q}_{21}^H &{} \mathbf{Q}_{21} \mathbf{Q}_{22}^H \\ \mathbf{Q}_{22} \mathbf{Q}_{21}^H &{} \mathbf{Q}_{22} \mathbf{Q}_{22}^H \\ \end{array}} \right] \left[ {\begin{array}{c} \bar{{\mathbf{c}}}(\psi ) \\ \bar{{\mathbf{c}}}^{*} (\psi )e^{-j\mu } \\ \end{array}} \right] \nonumber \\= & {} \left[ {\begin{array}{c} 1 \\ e^{-j\mu } \\ \end{array}} \right] ^H \left[ {\begin{array}{c@{\quad }c} \bar{{\mathbf{c}}}^H (\psi )\mathbf{Q}_{21} \mathbf{Q}_{21}^H \bar{{\mathbf{c}}}(\bar{{\psi }}) &{} \bar{{\mathbf{c}}}^H (\psi )\mathbf{Q}_{21} \mathbf{Q}_{22}^H \bar{{\mathbf{c}}}^{*} (\psi ) \\ \bar{{\mathbf{c}}}^T (\psi )\mathbf{Q}_{22} \mathbf{Q}_{21}^H \bar{{\mathbf{c}}}(\bar{{\psi }}) &{} \bar{{\mathbf{c}}}^T (\psi )\mathbf{Q}_{22} \mathbf{Q}_{22}^H \bar{{\mathbf{c}}}^{*} (\psi ) \\ \end{array}} \right] \left[ {\begin{array}{c} 1 \\ e^{-j\mu } \\ \end{array}} \right] \nonumber \\= & {} \left[ {\begin{array}{c} 1 \\ e^{-j\mu } \\ \end{array}} \right] ^H \left[ {\begin{array}{c@{\quad }c} F_{41} &{} F_{42} \\ F_{43} &{} F_{44} \\ \end{array}} \right] \left[ {\begin{array}{c} 1 \\ e^{-j\mu } \\ \end{array}} \right] \end{aligned}$$
(55)

and then, (51) can be rewritten as

$$\begin{aligned} f(\psi ,\mu )=\left[ {\begin{array}{c} 1 \\ e^{-j\mu } \\ \end{array}} \right] ^H \left[ {\begin{array}{cc} \tilde{F}_1 &{} \tilde{F}_2 \\ \tilde{F}_3 &{} \tilde{F}_4 \\ \end{array}} \right] \left[ {\begin{array}{c} 1 \\ e^{-j\mu } \\ \end{array}} \right] \end{aligned}$$
(56)

where \(\tilde{F}_1 =F_{11} +F_{21} +F_{31} +F_{41} \), \(\tilde{F}_2 =F_{12} +F_{22} +F_{32} +F_{42} \), \(\tilde{F}_3 =F_{13} +F_{23} +F_{33} +F_{43} \), \(\tilde{F}_4 =F_{14} +F_{24} +F_{34} +F_{44} \).

Through (56), we can see that \(\mu \) is independent. For a given angular parameter \(\psi \), we can find the minimum of \(f(\psi ,\mu )\).

Let \({\partial f(\psi ,\mu )}/{\partial \mu }=0\), we obtain

$$\begin{aligned} e^{j\mu }=\pm \sqrt{{\tilde{F}_2 }/{\tilde{F}_3 }} \end{aligned}$$
(57)

The minimum of \(f(\psi ,\mu )\) over \(\mu \) is given when the right-hand side of (57) takes negative value. Using (57) into (56), the cost function can be written as

$$\begin{aligned} f(\psi )=\tilde{F}_1 +\tilde{F}_4 -2\rho \sqrt{\tilde{F}_2 \tilde{F}_3 } \end{aligned}$$
(58)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, X., Zheng, Z., Ko, C.C. et al. Low-complexity 2D parameter estimation of coherently distributed noncircular signals using modified propagator. Multidim Syst Sign Process 28, 407–426 (2017). https://doi.org/10.1007/s11045-015-0348-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11045-015-0348-1

Keywords

Navigation