Skip to main content
Log in

Modification of friction for straightforward implementation of friction law

  • Published:
Multibody System Dynamics Aims and scope Submit manuscript

Abstract

Friction phenomena exist in almost every mechanical device. Due to its complicated nature and influence on the system performance, extensive dynamic simulations are often required in the early system design stage. In this work, a novel approach for eliminating the numerical discontinuity in the classical Coulomb law and its extension is developed. Specifically, the method improves the computation process instead of modifying the Coulomb friction model. The estimated error of this procedure is derived under a simple and idealized model with an externally applied sinusoidal force. Two application examples of a single-body system are used to verify the proposed method, namely, 1-DOF mass-spring system with a moving belt and static ground. Results indicate that the proposed approach reveals the characteristics of the classical Coulomb friction law and its development and eliminates oscillations in the simulated friction force. Furthermore, a 3-DOF multi-body system is simulated to investigate the difference between the LuGre model and the proposed approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Abbreviations

\(A\) :

Amplitude of force \(\boldsymbol{F}_{e}\) (N)

\(C\) :

Constant

\(\boldsymbol{f}\) :

Friction (N)

\(f_{c}\) :

Magnitude of dynamic friction (N)

\(f_{s}\) :

Magnitude of static friction (N)

\(f_{v}\) :

Coefficient of viscosity (N s/m)

\(\boldsymbol{F}_{e}\) :

External force (N)

\(\boldsymbol{I}\) :

Impulse in contact surface (N s)

\(\boldsymbol{I}_{s}\) :

Impulse of maximum stiction in contact surface (N s)

\(J\) :

Principal moments of inertia (kg m2)

\(m\) :

Mass (kg)

\(M\) :

Mass coefficient (kg)

\(\boldsymbol{N}\) :

Normal contact force (N)

\(\boldsymbol{r}\) :

Contact position vector (m)

\(t\) :

Time in the simulation process (s)

\(\Delta t\) :

Fixed or maximum step size in the simulation process (s)

\(\Delta t_{\mathrm{maxf}}\) :

Maximum allowable step size (s)

\(\boldsymbol{v}\) :

Velocity at the contact point (m/s)

\(\boldsymbol{v}_{{0}}\) :

Initial velocity (m/s)

\(\boldsymbol{v}_{r}\) :

Relative tangential velocity (m/s)

\(v_{\varepsilon }\) :

Velocity threshold to distinguish between static friction and dynamic friction (m/s)

\(v_{s}\) :

Stribeck velocity (m/s)

\(\Delta \boldsymbol{v}\) :

Change in velocity of the contact point (m/s)

\(w\) :

Angular frequency of force \(\boldsymbol{F}_{e}\) (rad/s)

\(\alpha \) :

Angle between \(\boldsymbol{r}\) and the friction \(\boldsymbol{f}\) (rad)

\(\varepsilon \) :

Numerical calculation errors

\(\varepsilon_{e}\) :

Numerical calculation errors relative to amplitude \(A\)

\(\delta_{\sigma }\) :

Geometry factor

\(\mu_{k}\) :

Kinetic friction coefficient

\(\mu_{s}\) :

Static friction coefficient

\(\sigma_{0}\) :

Stiffness coefficient (N/m)

\(\sigma_{1}\) :

Damping coefficient (N s/m)

\(\sigma_{2}\) :

coefficient of viscosity (N s/m)

1, 2, 3:

Bodies 1, 2 and 3

\(i\) :

\(i\)th contacting pairs

vr:

Relative velocity

fs:

Static friction

References

  1. Saadabad, N.A., Moradi, H., Vossoughi, G.: Dynamic modeling, optimized design, and fabrication of a 2DOF piezo-actuated stick-slip mobile microrobot. Mech. Mach. Theory 133, 514–530 (2019)

    Article  Google Scholar 

  2. Rahmani, M., Behdinan, K.: Investigation on the effect of coulomb friction on nose landing gear shimmy. J. Vib. Control 25(2), 255–272 (2019)

    Article  Google Scholar 

  3. Wang, Y., Zhu, J., Pang, M., Luo, J., Xie, S., Liu, M., Sun, Y.: A stick-slip positioning stage robust to load variations. IEEE/ASME Trans. Mechatron. 21(4), 2165–2173 (2016)

    Article  Google Scholar 

  4. Marques, F., Flores, P., Claro, J.P., Lankarani, H.M.: Modeling and analysis of friction including rolling effects in multibody dynamics: a review. Multibody Syst. Dyn. 45(2), 223–244 (2019)

    Article  MathSciNet  Google Scholar 

  5. Marques, F., Flores, P., Claro, J.P., Lankarani, H.M.: A survey and comparison of several friction force models for dynamic analysis of multibody mechanical systems. Nonlinear Dyn. 86(3), 1407–1443 (2016)

    Article  MathSciNet  Google Scholar 

  6. Dupont, P.E.: Friction modeling in dynamic robot simulation. In: Proceedings of the IEEE International Conference on Robotics and Automation, pp. 1370–1376. IEEE, New York (1990)

    Chapter  Google Scholar 

  7. Glocker, C.: Set-Valued Force Laws: Dynamics of Non-smooth Systems, vol. 1. Springer, New York (2013)

    Google Scholar 

  8. Pennestrì, E., Rossi, V., Salvini, P., Valentini, P.P.: Review and comparison of dry friction force models. Nonlinear Dyn. 83(4), 1785–1801 (2016)

    Article  Google Scholar 

  9. Olsson, H., Åström, K.J., De Wit, C.C., Gäfvert, M., Lischinsky, P.: Friction models and friction compensation. Eur. J. Control 4(3), 176–195 (1998)

    Article  Google Scholar 

  10. Karnopp, D.: Computer simulation of stick-slip friction in mechanical dynamic systems. J. Dyn. Syst. Meas. Control 107, 100–103 (1985)

    Article  Google Scholar 

  11. Awrejcewicz, J., Grzelczyk, D., Pyryev, Y.: A novel dry friction modeling and its impact on differential equations computation and Lyapunov exponents estimation. J. Vibroeng. 10, 475–482 (2008)

    MATH  Google Scholar 

  12. Xiang, W., Yan, S., Wu, J.: Dynamic analysis of planar mechanical systems considering stick-slip and Stribeck effect in revolute clearance joints. Nonlinear Dyn. 95(1), 321–341 (2019)

    Article  Google Scholar 

  13. Dahl, P.R.: A solid friction model. Technical report, The Aerospace Corporation, El Segundo, CA (1968)

  14. Haessig, D.A., Friedland, B.: On the modeling and simulation of friction. J. Dyn. Syst. Meas. Control 113, 354–362 (1991)

    Article  Google Scholar 

  15. Dupont, P., Armstrong, B., Hayward, V.: Elasto-plastic friction model: contact compliance and stiction. Proc. Am. Control Conf. 2, 1072–1077 (2000)

    Google Scholar 

  16. Gonthier, Y., McPhee, J., Lange, C., Piedboeuf, J-C.: A regularized contact model with asymmetric damping and dwell-time dependent friction. Multibody Syst. Dyn. 11, 209–233 (2004)

    Article  Google Scholar 

  17. Liang, J., Fillmore, S., Ma, O.: An extended bristle friction force model with experimental validation. Mech. Mach. Theory 56, 123–137 (2012)

    Article  Google Scholar 

  18. Canudas de Wit, C., Olsson, H., Åström, K.J., Lischinsky, P.: A new model for control of systems with friction. IEEE Trans. Autom. Control 40, 419–425 (1995)

    Article  MathSciNet  Google Scholar 

  19. Kapelke, S., Seemann, W., Hetzler, H.: The effect of longitudinal high-frequency in-plane vibrations on a 1-DoF friction oscillator with compliant contact. Nonlinear Dyn. 88(4), 3003–3015 (2017)

    Article  Google Scholar 

  20. Liu, C.C., Tsai, M.S., Cheng, C.C.: Development of a novel transmission engaging model for characterizing the friction behavior of a feed drive system. Mech. Mach. Theory 134, 425–439 (2019)

    Article  Google Scholar 

  21. Piatkowski, T., Wolski, M.: Analysis of selected friction properties with the Froude pendulum as an example. Mech. Mach. Theory 119, 37–50 (2018)

    Article  Google Scholar 

  22. Threlfall, D.C.: The inclusion of Coulomb friction in mechanisms programs with reference to DRAM au programme DRAM. Mech. Mach. Theory 13, 475–483 (1978)

    Article  Google Scholar 

  23. Bengisu, M.T., Akay, A.: Stability of friction-induced vibrations in multi-degree-of-freedom systems. J. Sound Vib. 171, 557–570 (1994)

    Article  Google Scholar 

  24. Ambrósio, J.A.C.: Impact of rigid and flexible multibody systems: deformation description and contact model. Virt. Nonlinear Multibody Syst. 103, 57–81 (2003)

    Article  Google Scholar 

  25. Brown, P., McPhee, J.: A continuous velocity-based friction model for dynamics and control with physically meaningful parameters. J. Comput. Nonlinear Dyn. 11(5), 054502 (2016)

    Article  Google Scholar 

  26. Haug, E.: Simulation of friction and stiction in multibody dynamics model problems. Mech. Based Des. Struct. Mach. 46(3), 296–317 (2018)

    Article  Google Scholar 

  27. Zobova, A.A.: Dry friction distributed over a contact patch between a rigid body and a visco-elastic plane. Multibody Syst. Dyn. 45(2), 203–222 (2019)

    Article  MathSciNet  Google Scholar 

  28. Bhushan, B.: Introduction to Tribology, pp. 201–202. Wiley, New York (2013)

    Book  Google Scholar 

  29. Lorenz, H.: Lehrbuch der Technischen Physik: Erster Band: Technische Mechanik starrer Gebilde. Verlag von julius. Springer, Berlin (1924)

    Book  Google Scholar 

  30. Pennestri, E., Valentini, P.P., Vita, L.: Multibody dynamics simulation of planar linkages with Dahl friction. Multibody Syst. Dyn. 17(4), 321–347 (2007)

    Article  MathSciNet  Google Scholar 

  31. Marques, F., Flores, P., Lankarani, H.M.: On the frictional contacts in multibody system dynamics. In: Multibody Dynamics, pp. 67–91. Springer, Cham (2016)

    Chapter  Google Scholar 

  32. Zeitschrift des Vereines Deutscher Ingenieure Die wesentlichen Eigenschaften der Gleit und Rollenlager 46, 1342–1348 (1903)

  33. Bo, L.C., Pavelescu, D.: The friction-speed relation and its influence on the critical velocity of stick-slip motion. Wear 82, 277–289 (1982)

    Article  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the National Natural Science Foundation of China (Grant no. U1637206, 51575340), State Key Laboratory of Mechanical System and Vibration of Shanghai Jiao Tong University (Grant no. MSVZD201912) and Shanghai Aerospace Science and Technology Innovation Fund (Grant no. SAST2017-079).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhinan Zhang.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, S., Zhang, Z. Modification of friction for straightforward implementation of friction law. Multibody Syst Dyn 48, 239–257 (2020). https://doi.org/10.1007/s11044-019-09694-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11044-019-09694-0

Keywords

Navigation