Skip to main content
Log in

Numerical solution of frictional contact problems based on a mortar algorithm with an augmented Lagrangian technique

  • Published:
Multibody System Dynamics Aims and scope Submit manuscript

Abstract

This work presents a frictional contact formulation to solve three-dimensional contact problems with large finite displacements. The kinematic description of the contacting bodies is defined by using a mortar approach. The regularization of the variational frictional contact problem is solved with a mixed dual penalty approach based on an augmented Lagrangian technique. In this method, the numerical results do not depend on the definition of any user-defined penalty parameter affecting the normal or tangential component of forces. The robustness and performance of the proposed algorithm are studied and validated by solving a series of numerical examples with finite displacements and large slip.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Alart, P., Curnier, A.: A mixed formulation for frictional contact problems prone to Newton like solution methods. Comput. Methods Appl. Mech. Eng. 92(3), 353–375 (1991). doi:10.1016/0045-7825(91)90022-X, http://www.sciencedirect.com/science/article/pii/004578259190022X

    Article  MATH  MathSciNet  Google Scholar 

  2. Areias, P.M.A., César de Sá, J.M.A., Conceiçao António, C.A.: Algorithms for the analysis of 3D finite strain contact problems. Int. J. Numer. Methods Eng. 61, 1107–1151 (2004)

    Article  MATH  Google Scholar 

  3. Armero, F., Petocz, E.: A new dissipative time-stepping algorithm for frictional contact problems: formulation and analysis. Comput. Methods Appl. Mech. Eng. 179, 151–178 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  4. Bernardi, C., Maday, Y., Patera, A.: A new nonconforming approach to domain decomposition: the mortar element method. In: Brezia, H., Lions, J. (eds.) Nonlinear Partial Differential Equations and Their Applications, pp. 13–51. Pitman/Wiley, London/New York (1992)

    Google Scholar 

  5. Bowling, A., Flickinger, D., Harmeyer, S.: Energetically consistent simulation of simultaneous impacts and contacts in multibody systems with friction. Multibody Syst. Dyn. 22, 27–45 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  6. Brezzi, F., Fortin, M.: Mixed and Hybrid Finite Element Methods. Springer, New York (1991)

    Book  MATH  Google Scholar 

  7. Cardona, A., Igor, K., Geradin, M.: Design of a new finite element programming environment. Eng. Comput. 11, 365–381 (1994)

    Article  MATH  Google Scholar 

  8. Cavalieri, F.: Multiaxial fatigue and wear design in mechanical components at high temperature. Thesis, Universidad Nacional del Litoral, http://bibliotecavirtual.unl.edu.ar:8180/tesis/handle/1/200 (2010)

  9. Cavalieri, F.J., Cardona, A.: An augmented Lagrangian method to solve 3D contact problems. Lat. Am. Appl. Res. 42(201), 281–289 (2012)

    Google Scholar 

  10. Cavalieri, F.J., Cardona, A.: An augmented Lagrangian technique combined with a mortar algorithm for modelling mechanical contact problems. Int. J. Numer. Methods Eng. 93(4), 420–442 (2013)

    Article  MathSciNet  Google Scholar 

  11. Cavalieri, F.J., Cardona, A.: Three-dimensional numerical solution for wear prediction using a mortar contact algorithm. Int. J. Numer. Methods Eng. 96(8), 467–486 (2013)

    Article  MathSciNet  Google Scholar 

  12. Cavalieri, F.J., Fachinotti, V., Cardona, A.: A mortar contact algorithm for three-dimensional elasticity problems. Rev. Int. Métod. Numér. Cálc. Diseño Ing. 28(2), 80–92 (2012)

    MathSciNet  Google Scholar 

  13. Cichosz, T., Bischoff, M.: Consistent treatment of boundaries with mortar contact formulations using dual Lagrange multipliers. Comput. Methods Appl. Mech. Eng. 200(9–12), 1317–1332 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  14. De Lorenzis, L., Temizer, A., Wriggers, P., Zavarise, G.: A large deformation frictional contact formulation using NURBS-based isogeometric analysis. Int. J. Numer. Methods Eng. 87(13), 1278–1300 (2011)

    MATH  Google Scholar 

  15. De Lorenzis, L., Wriggers, P., Zavarise, G.: A mortar formulation for 3D large deformation contact using NURBS-based isogeometric analysis and the augmented Lagrangian method. Comput. Mech. 49(1), 1–20 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  16. Esche, S., Kinzel, G., Altan, T.: Issues in convergence improvement for non-linear finite element programs. Int. J. Numer. Methods Eng. 40, 4577–4594 (1997)

    Article  MATH  Google Scholar 

  17. Fischer, K., Wriggers, P.: Frictionless 2D contact formulations for finite deformations based on the mortar method. Comput. Mech. 36(3), 226–244 (2005)

    Article  MATH  Google Scholar 

  18. Fischer, K., Wriggers, P.: Mortar based frictional contact formulation for higher order interpolations using the moving friction cone. Comput. Methods Appl. Mech. Eng. 195(37–40), 5020–5036 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  19. Flores, F.: Un algoritmo de contacto para el análisis explícito de procesos de embutición. Métod. Numér. Cálc. Diseño Ing. 16, 421–432 (2000)

    MATH  Google Scholar 

  20. Flores, P., Ambrósio, J.: On the contact detection for contact-impact analysis in multibody systems. Multibody Syst. Dyn. 24, 103–122 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  21. Förg, M., Pfeiffer, F., Ulbrich, H.: Simulation of unilateral constrained systems with many bodies. Multibody Syst. Dyn. 14, 137–154 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  22. Gamez-Montero, P., Zárate, F., Sánchez, M., Castilla, R., Codina, E.: El problema del contacto en bombas de engranajes de perfil troncoidal. Métod. Numér. Cálc. Diseño Ing. 21, 213–229 (2005)

    MATH  Google Scholar 

  23. Giannakopoulos, A.: The radial mapping method for the integration of friction constitutive relations. Comput. Struct. 6, 281–290 (1989)

    Google Scholar 

  24. Gitterle, M.: A dual mortar formulation for finite deformation frictional contact problems including wear and thermal coupling. Ph.D. thesis, Fakultät für Maschinenwesen der Technischen Universität München (2012)

  25. Gitterle, M., Popp, A., Gee, M.W., Wall, W.A.: Finite deformation frictional mortar contact using a semi-smooth Newton method with consistent linearization. Int. J. Numer. Methods Eng. 84(5), 543–571 (2010). doi:10.1002/nme.2907

    MATH  MathSciNet  Google Scholar 

  26. Hammer, M.: Frictional mortar contact for finite deformation problems with synthetic contact kinematics. Ph.D. thesis, Institut für Festigkeitslehre der Technischen Universität Graz (2012)

  27. Hartmann, S., Oliver, J., Weyler, R., Cante, J., Hernández, J.: A contact domain method for large deformation frictional contact problems. Part 2: numerical aspects. Comput. Methods Appl. Mech. Eng. 198(33–36), 2607–2631 (2009). doi:10.1016/j.cma.2009.03.009, http://www.sciencedirect.com/science/article/pii/S0045782509001297

    Article  MATH  Google Scholar 

  28. Hartmann, S., Ramm, E.: A mortar based contact formulation for non-linear dynamics using dual Lagrange multipliers. Finite Elem. Anal. Des. 44(5), 245–258 (2008)

    Article  MathSciNet  Google Scholar 

  29. Hüeber, S., Wohlmuth, B.: A primal dual active set strategy for non-linear multibody contact problems. Comput. Methods Appl. Mech. Eng. 194(27–29), 3147–3166 (2005)

    Article  MATH  Google Scholar 

  30. Hüeber, S., Wohlmuth, B.: Thermo-mechanical contact problems on non-matching meshes. Comput. Methods Appl. Mech. Eng. 198(15–16), 1338–1350 (2009)

    Article  MATH  Google Scholar 

  31. Heegaard, J., Curnier, A.: An augmented Lagrangian method for discrete large slip contact problems. Int. J. Numer. Methods Eng. 36(4), 569–593 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  32. Heintz, P., Hansbo, P.: Stabilized Lagrange multiplier methods for bilateral elastic contact with friction. Comput. Methods Appl. Mech. Eng. 195(33–36), 4323–4333 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  33. Hesch, C., Betsch, P.: Transient three-dimensional domain decomposition problems: frame-indifferent mortar constraints and conserving integration. Int. J. Numer. Methods Eng. 82(3), 329–358 (2010)

    MATH  MathSciNet  Google Scholar 

  34. Hesch, C., Betsch, P.: Transient three-dimensional contact problems: mortar method. Mixed methods and conserving integration. Comput. Mech. 48(4), 461–475 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  35. Hüeber, S., Mair, M., Wohlmuth, B.I.: A priori error estimates and an inexact primal-dual active set strategy for linear and quadratic finite elements applied to multibody contact problems. Appl. Numer. Math. 54(3–4), 555–576 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  36. Ignesti, M., Innocenti, A., Marini, L., Meli, E., Rindi, A.: Development of a model for the simultaneous analysis of wheel and rail wear in railway systems. Multibody Syst. Dyn. 31(2), 191–240 (2014)

    Article  Google Scholar 

  37. Johnson, K.: Contact Mechanics. Cambridge University Press, Cambridge (1987)

    Google Scholar 

  38. Jones, R., Papadopoulos, P.: A novel three-dimensional contact finite element based on smooth pressure interpolations. Int. J. Numer. Methods Eng. 51(7), 791–811 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  39. Kikuchi, N., Oden, J.: Contact Problems in Elasticity: a Study of Variational Inequalities and Finite Element Methods. SIAM, Philadelphia (1988)

    Book  MATH  Google Scholar 

  40. Kim, J., Youn, S.: Isogeometric contact analysis using mortar method. Int. J. Numer. Methods Eng. 89(12), 1559–1581 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  41. Krstulovic-Opara, L., Wriggers, P., Korelc, J.: Symbolically generated 3D smooth polynomial frictional contact element based on the quartic Bézier surfaces. In: Oñate, E., Bugeda, G., Suárez, B. (eds.) CD-ROM Proceedings of the European Congress on Computational Methods in Applied Sciences and Engineering. ECCOMAS, Barcelona (2000)

    Google Scholar 

  42. Laursen, T.: Formulation and treatment of frictional contact problems using finite elements. Ph.D. Thesis, Stanford University, USA (1992)

  43. Laursen, T.: Computational Contact and Impact Mechanics. Springer, Berlin (2002)

    MATH  Google Scholar 

  44. McDevitt, T.W., Laursen, T.A.: A mortar-finite element formulation for frictional contact problems. Int. J. Numer. Methods Eng. 48(10), 1525–1547 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  45. Moreau, J.: Application of convex analysis to some problems of dry friction. In: Zorski, H. (ed.) Trends of Pure Mathematics Applied to Mechanics, vol. 11. Pitma, London (1979)

    Google Scholar 

  46. Oden, J., Pire, E.: Algorithms and numerical results for finite element approximation of contact problems with non-classical friction laws. Comput. Struct. 19(1–2), 137–147 (1984)

    Article  Google Scholar 

  47. Oliver, J., Hartmann, S., Cante, J., Weyler, R., Hernández, J.: A contact domain method for large deformation frictional contact problems. Part 1: theoretical basis. Comput. Methods Appl. Mech. Eng. 198(33–36), 2591–2606 (2009). doi:10.1016/j.cma.2009.03.006, http://www.sciencedirect.com/science/article/pii/S004578250900125X

    Article  MATH  Google Scholar 

  48. Papadopoulos, P., Solberg, J.: A Lagrange multiplier method for the finite element solution of frictionless contact problems. Math. Comput. Model. 28(4–8), 373–384 (1998)

    Article  MATH  Google Scholar 

  49. Papadopoulos, P., Taylor, R.: A mixed formulation for the finite element solution of contact problems. Technical Report UCB/ SEMM Report 90/18, University of California at Berkeley (1990)

  50. Popp, A., Gee, M.W., Wall, W.A.: A finite deformation mortar contact formulation using a primal dual active set strategy. Int. J. Numer. Methods Eng. 79(11), 1354–1391 (2009). doi:10.1002/nme.2614

    Article  MATH  MathSciNet  Google Scholar 

  51. Popp, A., Gitterle, M., Gee, M.W., Wall, W.: A dual mortar approach for 3D finite deformation contact with consistent linearization. Int. J. Numer. Methods Eng. 83(11), 1428–1465 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  52. Popp, A., Seitz, A., Gee, M.W., Wall, W.A.: Improved robustness and consistency of 3D contact algorithms based on a dual mortar approach. Comput. Methods Appl. Mech. Eng. 264, 67–80 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  53. Puso, M.: A 3D mortar method for solid mechanics. Int. J. Numer. Methods Eng. 59(3), 315–336 (2004)

    Article  MATH  Google Scholar 

  54. Puso, M., Laursen, T.: A mortar-finite element formulation for frictional contact problems. Comput. Methods Appl. Math. 193, 60l–629 (2004)

    MathSciNet  Google Scholar 

  55. Puso, M., Laursen, T.: A mortar segment-to-segment frictional contact method for large deformations. Comput. Methods Appl. Mech. Eng. 193(45–47), 4891–4913 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  56. Puso, M.A., Laursen, T.A.: A mortar segment-to-segment contact method for large deformation solid mechanics. Comput. Methods Appl. Mech. Eng. 193(6–8), 601–629 (2004). doi:10.1016/j.cma.2003.10.010, http://www.sciencedirect.com/science/article/pii/S0045782503005802

    Article  MATH  MathSciNet  Google Scholar 

  57. SAMCEF: Mecano V13 user manual. LMS-Samtech S.A. (2007). http://www.lmsintl.com

  58. Simo, J., Laursen, T.: An augmented Lagrangian treatment of contact problems involving friction. Comput. Struct. 42, 97–116 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  59. Simo, J.C., Hughes, T.J.R.: Computational Inelasticity. Springer, Berlin (1998)

    MATH  Google Scholar 

  60. Solberg, J., Jones, R., Papadopoulos, P.: A family of simple two-pass dual formulations for the finite element solution of contact problems. Comput. Methods Appl. Mech. Eng. 196(4–6), 782–802 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  61. Solberg, J., Papadopoulos, P.: An analysis of dual formulations for the finite element solution of two-body contact problems. Comput. Methods Appl. Mech. Eng. 194(25–26), 2734–2780 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  62. Stadler, M., Holzapfel, G.A.: Subdivision schemes for smooth contact surfaces of arbitrary mesh topology in 3D. Int. J. Numer. Methods Eng. 60(7), 1161–1195 (2004). doi:10.1002/nme.1001

    Article  MATH  MathSciNet  Google Scholar 

  63. Temizer, A.: A mixed formulation of mortar-based frictionless contact. Comput. Methods Appl. Mech. Eng. 223–224, 173–185 (2012)

    Article  MathSciNet  Google Scholar 

  64. Temizer, A.: A mixed formulation of mortar-based contact with friction. Comput. Methods Appl. Mech. Eng. 255, 183–195 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  65. Temizer, A., Wriggers, P., Hughes, J.: Three-dimensional mortar-based frictional contact treatment in isogeometric analysis with NURBS. Comput. Methods Appl. Mech. Eng. 209–212, 115–128 (2012)

    Article  MathSciNet  Google Scholar 

  66. Tur, M., Fuenmayor, F., Wriggers, P.: A mortar-based frictional contact formulation for large deformations using Lagrange multipliers. Comput. Methods Appl. Mech. Eng. 198(37–40), 2860–2873 (2009). doi:10.1016/j.cma.2009.04.007, http://www.sciencedirect.com/science/article/pii/S0045782509001595

    Article  MATH  MathSciNet  Google Scholar 

  67. Wohlmuth, B.: A mortar finite element method using dual spaces for the Lagrange multiplier. SIAM J. Numer. Anal. 38(3), 989–1012 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  68. Wriggers, P.: Computational Contact Mechanics. Wiley and Sons, New York (2002)

    Google Scholar 

  69. Yang, B., Laursen, T., Meng, X.: Two dimensional mortar contact methods for large deformation frictional sliding. Int. J. Numer. Methods Eng. 62(9), 1183–1225 (2005)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work has received financial support from Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), PIP 2011/01105, and from Universidad Nacional del Litoral (CAI+D 2011).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Cardona.

Appendix

Appendix

The linearization of the tangential vector t A is presented. The tangential vector t is used in the slip status, thus

$$ \boldsymbol {t}_A= \frac{\boldsymbol {\sigma }_{\mathit{TA}}}{\|\boldsymbol {\sigma }_{\mathit{TA}}\| } = \frac{\boldsymbol {\sigma }_{\mathit{TA}}}{-\mu\sigma_{\mathit{NA}}}. $$
(38)

The linearization operator Δ applied to Eq. (38) yields

$$ \Delta \boldsymbol {t}_A = \frac{[\boldsymbol {I}-\boldsymbol {t}_A\otimes \boldsymbol {t}_A]\Delta \boldsymbol {\sigma }_{A}}{\|\boldsymbol {\sigma }_{\mathit{TA}}\|} = \frac{[\boldsymbol {I}-\boldsymbol {t}_A\otimes \boldsymbol {t}_A]\Delta \boldsymbol {\sigma }_{A}}{-\mu\sigma_{\mathit{NA}}}. $$
(39)

After some algebraic manipulations, the linearization of the tangential vector is written as

$$ \Delta \boldsymbol {t}_A = -\frac{\boldsymbol {I}-\boldsymbol {t}_A\otimes \boldsymbol {t}_A - \boldsymbol {\nu }_A\otimes \boldsymbol {\nu }_A}{\mu\sigma_{\mathit{NA}}}\Delta \boldsymbol {\sigma }_A + \frac {\boldsymbol {\nu }_A\otimes \boldsymbol {\sigma }_A + (\boldsymbol {I}- \boldsymbol {t}_A\otimes \boldsymbol {t}_A) \sigma_{\mathit{NA}} }{\mu\sigma_{\mathit{NA}}}\Delta \boldsymbol {\nu }_A. $$
(40)

If the variation of the normal vector ν A is neglected, i.e., if the normal vector is computed at the previous time step, the final expression is given by

$$ \Delta \boldsymbol {t}_A = -\frac{\boldsymbol {I}-\boldsymbol {t}_A\otimes \boldsymbol {t}_A - \boldsymbol {\nu }_A\otimes \boldsymbol {\nu }_A}{\mu\sigma_{\mathit{NA}}}\Delta \boldsymbol {\sigma }_A. $$
(41)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cavalieri, F.J., Cardona, A. Numerical solution of frictional contact problems based on a mortar algorithm with an augmented Lagrangian technique. Multibody Syst Dyn 35, 353–375 (2015). https://doi.org/10.1007/s11044-015-9449-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11044-015-9449-8

Keywords

Navigation