Skip to main content
Log in

Active vibration control of spatial flexible multibody systems

  • Published:
Multibody System Dynamics Aims and scope Submit manuscript

Abstract

In this work a flexible multibody dynamics formulation of complex models including elastic components made of composite materials is extended to include piezoelectric sensors and actuators. The only limitation for the deformation of a structural member is that they must remain elastic and linear when described in a coordinate frame fixed to a material point or region of its domain. The flexible finite-element model of each flexible body is obtained referring the flexible body nodal coordinates to the body fixed frame and using a diagonalized mass description of the inertia in the mass matrix and on the gyroscopic force vector. The modal superposition technique is used to reduce the number of generalized coordinates to a reasonable dimension for complex shaped structural models of flexible bodies. The active vibration control of the flexible multibody components is implemented using an asymmetric collocated piezoelectric sensor/actuator pair. An electromechanically coupled model is taken into account to properly consider the surface-bonded piezoelectric transducers and their effects on the time and spatial response of the flexible multibody components. The electromechanical effects are introduced in the flexible multibody equations of motion by the use of beam and plate/shell elements, developed to this purpose. A comparative study between the classical control strategies, constant gain and amplitude velocity feedback, and optimal control strategy, linear quadratic regulator (LQR), is performed in order to investigate their effectiveness to suppress vibrations in structures with piezoelectric sensing and actuating patches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Pritschow, G., Philipp, W.: Direct drives for high-dynamic machine tool axes. CIRP Ann. 39(1), 413–416 (1990)

    Article  Google Scholar 

  2. Ast, A., Eberhard, P.: Flatness-based control of parallel kinematics using multibody systems—simulation and experimental results. Arch. Appl. Mech. 76(3), 181–197 (2006)

    Article  MATH  Google Scholar 

  3. Ambrósio, J., Neto, M.A., Leal, R.P.: Optimization of a complex flexible multibody systems with composite materials. Multibody Syst. Dyn. 18(2), 117–144 (2007)

    Article  MATH  Google Scholar 

  4. Xianmin, Z., Changjian, S., Erdman, A.G.: Active vibration controller design and comparison study of flexible linkage mechanism systems. Mech. Mach. Theory 37(9), 985–997 (2002)

    Article  MATH  Google Scholar 

  5. Cleghorn, W.L., Fenton, R.G., Tabarrok, B.: Optimum design of high-speed flexible mechanisms. Mech. Mach. Theory 16(4), 399–406 (1981)

    Article  Google Scholar 

  6. Xianmin, Z.: Integrated optimal design of flexible mechanism and vibration control. Int. J. Mech. Sci. 46(11), 1607–1620 (2004)

    Article  MATH  Google Scholar 

  7. Trindade, M.A., Maio, C.E.B.: Multimodal passive vibration control of sandwich beams with shunted shear piezoelectric materials. Smart Mater. Struct. 17(5), 055015 (2008)

    Article  Google Scholar 

  8. Mohan, A., Singh, S., Saha, S.: A cohesive modeling technique for theoretical and experimental estimation of damping in serial robots with rigid and flexible links. Multibody Syst. Dyn. 23(4), 333–360 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  9. Ghazavi, A., Gordaninejad, F., Chalhoub, N.G.: Dynamic analysis of a composite-material flexible robot arm. Comput. Struct. 49(2), 315–327 (1993)

    Article  MATH  Google Scholar 

  10. Liu, C., Tian, Q., Hu, H.: Dynamics of a large scale rigid–flexible multibody system composed of composite laminated plates. Multibody Syst. Dyn. 26(3), 283–305 (2011)

    Article  MATH  Google Scholar 

  11. Sung, C.K., Chen, Y.C.: Vibration control of the elastodynamic response of high-speed flexible linkage mechanisms. J. Vib. Acoust. 113(1), 14–21 (1991)

    Article  Google Scholar 

  12. Behn, C.: Adaptive control of straight worms without derivative measurement. Multibody Syst. Dyn. 26(3), 213–243 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  13. Antos, P., Ambrósio, J.A.C.: A control strategy for vehicle trajectory tracking using multibody models. Multibody Syst. Dyn. 11(4), 365–394 (2004)

    Article  MATH  Google Scholar 

  14. Seifried, R.: Two approaches for feedforward control and optimal design of underactuated multibody systems. Multibody Syst. Dyn. 27(1), 75–93 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  15. Liao, C.Y., Sung, C.K.: An elastodynamic analysis and control of flexible linkages using piezoceramic sensors and actuators. J. Mech. Des. 115(3), 658–665 (1993)

    Article  Google Scholar 

  16. Wang, X., Mills, J.K.: A FEM model for active vibration control of flexible linkages. In: Proceedings ICRA ’04. IEEE International Conference on Robotics and Automation, vol. 5, pp. 4308–4313 (2004)

    Google Scholar 

  17. Ambrosio, J.A.C., Nikravesh, P.E.: Elasto-plastic deformations in multibody dynamics. Nonlinear Dyn. 3(2), 85–104 (1992)

    Article  Google Scholar 

  18. Song, J.O., Haug, E.J.: Dynamic analysis of planar flexible mechanisms. Comput. Methods Appl. Mech. Eng. 24(3), 359–381 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  19. Neto, M.A., Ambrósio, J.A.C., Leal, R.P.: Sensitivity analysis of flexible multibody systems using composite materials components. Int. J. Numer. Methods Eng. 77(3), 386–413 (2009)

    Article  MATH  Google Scholar 

  20. Das, M., Barut, A., Madenci, E.: Analysis of multibody systems experiencing large elastic deformations. Multibody Syst. Dyn. 23(1), 1–31 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  21. Simo, J.C., Vu-Quoc, L.: On the dynamics of flexible beams under large overall motions—the plane case: Part I. J. Appl. Mech. 53(4), 849–854 (1986)

    Article  MATH  Google Scholar 

  22. von Dombrowski, S.: Analysis of large flexible body deformation in multibody systems using absolute coordinates. Multibody Syst. Dyn. 8(4), 409–432 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  23. Nachbagauer, K., Pechstein, A., Irschik, H., Gerstmayr, J.: A new locking-free formulation for planar, shear deformable, linear and quadratic beam finite elements based on the absolute nodal coordinate formulation. Multibody Syst. Dyn. 26(3), 245–263 (2011)

    Article  MATH  Google Scholar 

  24. Ambrósio, J.A.C., Gonçalves, J.P.C.: Complex flexible multibody systems with application to vehicle dynamics. Multibody Syst. Dyn. 6(2), 163–182 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  25. Eberhard, P., Dignath, F., Kübler, L.: Parallel evolutionary optimization of multibody systems with application to railway dynamics. Multibody Syst. Dyn. 9(2), 143–164 (2003)

    Article  MATH  Google Scholar 

  26. Heirman, G., Naets, F., Desmet, W.: Forward dynamical analysis of flexible multibody systems using system-level model reduction. Multibody Syst. Dyn. 25(1), 97–113 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  27. Aarts, R., Meijaard, J., Jonker, J.: Flexible multibody modelling for exact constraint design of compliant mechanisms. Multibody Syst. Dyn. 27(1), 119–133 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  28. Ambrósio, J.: Efficient kinematic joint descriptions for flexible multibody systems experiencing linear and non-linear deformations. Int. J. Numer. Methods Eng. 56(12), 1771–1793 (2003)

    Article  MATH  Google Scholar 

  29. Valentini, P., Pennestrì, E.: Modeling elastic beams using dynamic splines. Multibody Syst. Dyn. 25(3), 271–284 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  30. Sanborn, G., Shabana, A.: On the integration of computer aided design and analysis using the finite element absolute nodal coordinate formulation. Multibody Syst. Dyn. 22(2), 181–197 (2009)

    Article  MATH  Google Scholar 

  31. Bauchau, O.A., Hodges, D.H.: Analysis of nonlinear multibody systems with elastic couplings. Multibody Syst. Dyn. 3(2), 163–188 (1999)

    Article  MATH  Google Scholar 

  32. Neto, M.A., Ambrósio, J.A.C., Leal, R.P.: Flexible multibody systems models using composite materials components. Multibody Syst. Dyn. 12(4), 385–405 (2004)

    Article  MATH  Google Scholar 

  33. Neto, A.M., Yu, W., Roy, S.: Two finite elements for general composite beams with piezoelectric actuators and sensors. In: Finite Elements in Analysis and Design, vol. 45, pp. 295–304 (2009)

    Google Scholar 

  34. Neto, M.A., Leal, R.P., Yu, W.: A triangular finite element with drilling degrees of freedom for static and dynamic analysis of smart laminated structures. Comput. Struct. 108–109, 61–74 (2012)

    Article  Google Scholar 

  35. Vasques, C.M.A., Dias Rodrigues, J.: Active vibration control of smart piezoelectric beams: comparison of classical and optimal feedback control strategies. Comput. Struct. 84(22–23), 1402–1414 (2006)

    Article  Google Scholar 

  36. Kwak, M.K., Heo, S.: Active vibration control of smart grid structure by multiinput and multioutput positive position feedback controller. J. Sound Vib. 304(1–2), 230–245 (2007)

    Article  Google Scholar 

  37. Reddy, J.N.: Mechanics of Laminated Composite Plates: Theory and Analysis. CRC Press, Boca Raton (1997)

    MATH  Google Scholar 

  38. Zemčík, R., Rolfes, R., Rose, M., Teßmer, J.: High-performance four-node shell element with piezoelectric coupling for the analysis of smart laminated structures. Int. J. Numer. Methods Eng. 70(8), 934–961 (2007)

    Article  MATH  Google Scholar 

  39. Zienkiewicz, O.C., Taylor, R.L.: The Finite Element Method. Butterwort-Heinemann, Woburn (2000)

    MATH  Google Scholar 

  40. Chevallier, G., et al.: A benchmark for free vibration and effective coupling of thick piezoelectric smart structures. Smart Mater. Struct. 17(6), 065007 (2008)

    Article  Google Scholar 

  41. Cook, R.: Concepts and Applications of Finite Element Analysis. Wiley, New York (1987)

    Google Scholar 

  42. Craig, R.R.: Structural Dynamics: An Introduction to Computer Methods. Wiley, New York (1981)

    Google Scholar 

  43. Cuadrado, J., Cardenal, J., Bayo, E.: Modeling and solution methods for efficient real-time simulation of multibody dynamics. Multibody Syst. Dyn. 1(3), 259–280 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  44. Nikravesh, P.E.: Computer Aided Analysis of Mechanical Systems. Prentice-Hall, Englewood Cliffs (1988)

    Google Scholar 

  45. Pereira, M.S., Proença, P.L.: Dynamic analysis of spatial flexible multibody systems using joint co-ordinates. Int. J. Numer. Methods Eng. 32(8), 1799–1812 (1991)

    Article  MATH  Google Scholar 

  46. Yoo, W.S., Haug, E.J.: Dynamic of flexible mechanical systems using vibration and static correction modes. J. Mech. Transm. Autom. Des. 108, 315–322 (1986)

    Article  Google Scholar 

  47. Cavin, R.K., Dusto, A.R.: Hamilton’s principle: finite element methods and flexible body dynamics. AIAA J. 15(12), 1684–1690 (1977)

    Article  MATH  Google Scholar 

  48. Balas, M.: Feedback control of flexible systems. IEEE Trans. Autom. Control 23(4), 673–679 (1978)

    Article  MATH  Google Scholar 

  49. Meirovitch, L.: Dynamics and Control of Structures. Wiley, New York (1990)

    Google Scholar 

  50. Franklin, G.F., Powell, J.D., Emami-Naeini, A.: Feedback Control of Dynamic Systems, 4th edn. Prentice-Hall, Upper Saddle River (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Augusta Neto.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Neto, M.A., Ambrósio, J.A.C., Roseiro, L.M. et al. Active vibration control of spatial flexible multibody systems. Multibody Syst Dyn 30, 13–35 (2013). https://doi.org/10.1007/s11044-013-9341-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11044-013-9341-3

Keywords

Navigation