Skip to main content
Log in

Multibody modeling and vibration dynamics analysis of washing machines

  • Published:
Multibody System Dynamics Aims and scope Submit manuscript

Abstract

In this paper a computational model of a horizontal axis washing machine is presented. The model has been built using a theoretical-experimental methodology consisting of integration of multibody system (MBS) formalism, detailed modeling of machine functional components and experimental data-based validation. The complete model of a washing machine is implemented in the commercial MBS environment Adams/View from MSC.Software. An undesirable impact of washing machine operation on the surroundings is vibration and noise. The impact comes from system dynamics and poorly distributed load inside the drum, creating an imbalance. To get insight into vibration dynamics extensive simulations have been performed for washing machines in service as well as for machines in the developing stage by using the created computational model. This paper presents several results of numerical studies of the vibration dynamics of washing machines including the study of sensitivity of system dynamics with respect to suspension structural parameters, and the results of investigation of the potential of the automatic counterbalancing technology for vibration output reduction. In particular, simulations of the considered two-plane balancing device has shown an existing significant potential in eliminating unbalanced load at supercritical spinning speed, resulting in a substantial vibration reduction in washing machines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32

Similar content being viewed by others

References

  1. Conrad, D.C., Soedel, W.: On the problem of oscillatory walk of automatic washing machines. J. Sound Vib. 188(3), 203–290 (1995)

    Article  Google Scholar 

  2. Conrad, D.C.: The fundamentals of automatic washing machine design based upon dynamic constraints. Dissertation, Purdue University, ISBN 9780591345728 (1994)

  3. Papadopoulos, E., Papadimitriou, I.: Modeling, Design and control of a portable washing machine during the spinning cycle. In: Proceedings of the 2001 IEEE/ASME International Conference on Advanced Intelligent Mechatronics Systems (AIM 2001), pp. 899–904 (2001)

    Google Scholar 

  4. Türkay, O.S., Sümer, I.T., Tugcu, A.K., Kiray, B.: Modeling and experimental assessment of suspension dynamics of a horizontal-axis washing machine. J. Vib. Acoust. 120(2), 534–543 (1998)

    Article  Google Scholar 

  5. Lim, H.T., Jeong, W.B., Kim, K.J.: Dynamic modeling and analysis of drum-type washing machine. Int. J. Precis. Eng. Manuf., 11(3), 407–417 (2010)

    Article  Google Scholar 

  6. Donida, F., Ferretti, G., Schiavo, F.: Modelling and simulation of a washing machine. In: Proceedings of the 50th International Anipla Congress, Roma, 14–15 November (2006)

    Google Scholar 

  7. Yoo, W.S., Kim, K.N., Kim, H.W., Sohn, J.H.: Developments of multibody system dynamics computer simulations and experiments. Multibody Syst. Dyn. 18(1), 35–58 (2007)

    Article  MATH  Google Scholar 

  8. Agnani, A., Cannella, F., Martarelli, M., Merloni, G., Tomasini, E.P.: Dynamic characterization of a washing machine: numerical multi-body analysis and experimental validation. In: IMAC-XXVI Conference and Exposition on Structural Dynamics, Orlando, Florida, USA, 4–7 February (2008)

    Google Scholar 

  9. Koizumi, T., Tsujiuchi, N., Matsumoto, S.: Noise prediction of a washing machine considering panel vibration. In: IMAC-XXVI Conference and Exposition on Structural Dynamics, Orlando, Florida, USA, 4–7 February (2008)

    Google Scholar 

  10. Hällsås, M.: Design of active balancing systems to offset the imbalance in washing machines. Master’s Thesis no. 2007:21, ISSN:1652-8557, Chalmers University of Technology (2007)

  11. Ermund, F., Ermund, M.: Design and modeling of an active balancing device for washing machines. Master’s Thesis no. 2006:76, ISSN:1652-8557, Chalmers University of Technology (2006)

  12. Johansson, T., Kvist, M.: Active balancing control for washing machines. Master’s Thesis no. 2007:45, ISSN:1652-8557, Chalmers University of Technology (2007)

  13. AB Electrolux: Method and arrangement for balancing of a load supporting device, International patent (PCT) publication number WO 98/48096 (1998)

  14. Bae, S., Lee, J.M., Kang, Y.J., Kang, J.S., Yun, R.J.: Dynamic analysis of an automatic washing machine with a hydraulic balancer. J. Sound Vib. 257(1), 3–18 (2002)

    Article  Google Scholar 

  15. Sonoda, Y., Yamamoto, H., Yokoi, Y.: Development of the vibration control system “G-Fall balancer” for a drum type washer/dryer. In: Proceedings of the 2003 IEEE/ASME International Conference on Advanced Intelligent Mechatronics, International Conference Center, Port Island, Kobe, Japan, 20–24 July (2003)

    Google Scholar 

  16. Lindell, H., Thuvesen, D.: Automatisk balansering av roterande maskiner, Mölndal, Sweden, ISBN: 992-508205-6 (1997)

  17. Sperling, L., Ryzhik, B., Linz, C.H., Duckstein, H.: Simulation of two-plane automatic balancing of a rigid rotor. Math. Comput. Simul. 58(4–6), 351–365 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  18. Olsson, K.O.: Limits for the use of auto-balancing. Int. J. Rotating Mach., 10(3), 221–226 (2004)

    Article  MathSciNet  Google Scholar 

  19. Juhlin, S.G.: Arrangement for balancing of a body rotatable about an axis. United States Patent number 5813253, published 29 Sept. 1998

  20. Kamath, G.M., Hurt, M.K., Wereley, N.M.: Analysis and testing of Bingham plastic behavior in semi-active electrorheological fluid dampers. Smart Mater. Struct. 5(5), 576–590 (1996)

    Article  Google Scholar 

  21. Berger, E.J.: Friction modeling for dynamic system simulation. Appl. Mech. Rev. 55(6), 535–577 (2002)

    Article  Google Scholar 

  22. Nygårds, T., Berbyuk, V.: Dynamics of washing machines: MBS modeling and experimental validation. In: Proceedings of the Multibody Dynamics 2007, ECCOMAS Thematic Conference, Milano, Italy, 25–28 June (2007)

    Google Scholar 

  23. Havsin function, Adams/View R3 and Adams/Solver R3 documentation, MSC. Software (2008)

  24. Ikhouane, F., Mañosa, V., Rodellar, J.: Dynamic properties of the hysteretic Bouc-Wen model. Syst. Control Lett. 56(3), 197–205 (2007)

    Article  MATH  Google Scholar 

  25. Kang, D.W., Jung, S.W., Ok, J.K., Nho, G.H., Yoo, W.S.: Application of a Bouc-Wen model for a frequency dependent nonlinear hysteretic friction damper. J. Mech. Sci. Technol. 24(6), 1311–1317 (2010)

    Article  Google Scholar 

  26. Ryu, J.C., Nho, G.H., Chung, B.S., Lee, J.H., Jung, S.W., Yoo, W.S.: Suggestion of MSTV (modified stick transition velocity) model for hysteretic damping mechanism. J. Mech. Sci. Technol. 22(7), 1305–1312 (2008)

    Article  Google Scholar 

  27. Kim, H.J., Yoo, W.S., Ok, J.K., Kang, D.W.: Parameter identification of damping models in multibody dynamic simulation of mechanical systems. Multibody Syst. Dyn. 22(4), 383–398 (2009)

    Article  MATH  Google Scholar 

  28. Suspa Website: Suspa.com—RD 18 FL. http://www.suspa.com/index.php?id=786 (Accessed January 26 2010)

  29. Aweco Appliance Systems webpage, http://www.aweco.de. (Accessed February 1, 2010)

  30. Li, H., Yoo, W.-S.: Hydraulic mound design for a drum-type washing machine imeche. J. Multibody Syst. Dyn., Proc. Inst. Mech. Eng., 225(2), 167–178 (2011)

    Google Scholar 

  31. Vasić, V.S., Lazarević, M.P.: Standard Industrial Guideline for Mechatronic Product Design. Faculty of Mechanical Engineering Transactions, 36, 103–108, Faculty of Mechanical Engineering, University Belgrade, Serbia (2008)

  32. Nygårds, T., Berbyuk, V., Sahlén, A.: Modeling and optimization of washing machine vibration dynamics. In: Proceedings of the 9th International Conference on Motion and Vibration Control (MOVIC 2008), Technische Universität München, Munich, Germany, 15–18 September (2008)

    Google Scholar 

  33. Kvist, M., Nygårds, T., Berbyuk, V.: Simulering av fördjupad tvättmaskin, Internal report, Mechanical Systems Group, Division of Dynamics, Applied Mechanics, Chalmers University of Technology (2007)

  34. Merediz, A.: Modeling of dehydration process in controlled spinning of washing machines. Master’s Thesis no. 2009:33, ISSN:1652-8557, Chalmers University of Technology (2009)

  35. Mahmud, A., Cuellar, E.: Optimization of load distribution in washing machines using bio-inspired computational methods. Master’s Thesis no. 2010:55, ISSN:1652-8557, Chalmers University of Technology (2010)

  36. Nygårds, T., Berbyuk, V.: An Adams/View-Matlab environment for clustered optimization of washing machines. In: Proceedings of the 22nd Nordic Seminar on Computational Mechanics (NSCM), DCE Technical Memorandum No. 11, ISBN 1901-7278, Aalborg University, Aalborg, Denmark, 22–23 October (2009)

    Google Scholar 

  37. Yarmohamadi, H., Berbyuk, V.: Computational model of conventional engine mounts for commercial vehicles: validation and application. Veh. Syst. Dyn. 49(5), 761–787 (2011)

    Article  Google Scholar 

  38. Carvalho, M., Ambrósio, J.: Identification of multibody vehicle model for crash analysis using an optimization methodology. Multibody Syst. Dyn. 24, 325–345 (2010)

    Article  MATH  Google Scholar 

  39. Vyasarayani, C.P., Uchida, T., Carvalho, A., McPhee, J.: Parameter identification in dynamic systems using the homotopy optimization approach. Multibody Syst. Dyn. 26, 411–424 (2011)

    Article  MATH  Google Scholar 

  40. Integrator statement, Adams/View R3 and Adams/Solver R3 documentation, MSC. Software (2008)

  41. Flügge, W.: Handbook of Engineering Mechanics, 1st edn. McGraw-Hill Book, New York (1962), Sect. 42-2, ISBN 0070213925

    Google Scholar 

  42. Jonsson, J., Lindell, H.: Method for pre-balancing a rotating drum having a temporarily shifting unbalance. United States Patent number 6295678, Published October 2, 2001

Download references

Acknowledgements

This work was supported financially by Asko Appliances AB, Vara, Sweden.

The authors wish to thank to Peder Bengtsson, Anders Eriksson, Patrik Jansson, Anders Sahlén and Marcus Person, all working at above mentioned company, for their support and ideas during the project within which this paper was written.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Nygårds.

Additional information

Commemorative contribution.

Appendix

Appendix

In \(\dot{\mathbf{x}} = \mathbf{Ax}\), where x=[x 1,x 2,x 3,…,x 24]T

x 1::

x position in local coordinate system of pulley, local coordinate system rotated 30 degrees counterclockwise around global y at t=0 s

x 2::

z position in local coordinate system of cradle center of mass parallel with global z at t=0 s

x 3::

z position in local coordinate system of left front foot parallel with global z at t=0 s

x 4::

y position in local coordinate system of right front foot parallel with global y at t=0 s

x 5::

z position in local coordinate system of right front foot parallel with global z at t=0 s

x 6::

y position in local coordinate system of left rear foot parallel with global y at t=0 s

x 7::

x position in local coordinate system of bottom housing plate center, parallel with global x at t=0 s

x 8::

x position in local coordinate system of imbalance load, located at the front bottom of the drum, parallel with global x at t=0 s

x 9::

x position in local coordinate system of top spring attachment plate center, parallel with global x at t=0 s

x 10::

y position in local coordinate system of top spring attachment plate center, parallel with global y at t=0 s

x 11::

y position in local coordinate system of top housing plate center, parallel with global y at t=0 s

x 12::

y position in local coordinate system of rotating part of motor, parallel with global y at t=0 s.

x 13 to x 24: velocities of the above quantities.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nygårds, T., Berbyuk, V. Multibody modeling and vibration dynamics analysis of washing machines. Multibody Syst Dyn 27, 197–238 (2012). https://doi.org/10.1007/s11044-011-9292-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11044-011-9292-5

Keywords

Navigation