Skip to main content
Log in

Modeling creep and creep recovery of 332 aluminum alloy using fractional calculus

  • Published:
Mechanics of Time-Dependent Materials Aims and scope Submit manuscript

Abstract

In this paper, the fractional Burgers model is proposed to depict the creep and creep-recovery behavior of 332 aluminum alloy. Both the creep stage during loading and creep-recovery stage after the load is suddenly removed are considered. Based on the whole-stage experimental data, parameter identification for the fractional model as well as parameter analysis are conducted. By comparison with the existing research findings and the simplified models, the results show that for the entire range, the proposed fractional Burgers model is much more suitable and efficient for modeling the whole creep and creep-recovery behavior of 332 aluminum alloy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

All data analyzed in this study can refer to the cited previous work (Dandrea and Lakes 2009).

References

  • Adeyeri, J.B., Krizek, R.J., Achenbach, J.D.: Multiple integral description of the nonlinear viscoelastic behavior of a clay soil. Trans. Soc. Rheol. 14(3), 375–392 (1970)

    Article  Google Scholar 

  • Brito-Oliveira, T.C., Moraes, I.C., Pinho, S.C., Campanella, O.H.: Modeling creep/recovery behavior of cold-set gels using different approaches. Food Hydrocoll. 123, 107183 (2022)

    Article  Google Scholar 

  • Calaf-Chica, J., Díez, P.M.B., Calzada, M.P.: Viscoelasticity and the Small Punch Creep recovery Test: numerical analysis and experimental tests on the applicability for polyvinyl chloride (PVC). Mech. Mater. 161, 104016 (2021)

    Article  Google Scholar 

  • Celauro, C., Fecarotti, C., Pirrotta, A., Collop, A.: Experimental validation of a fractional model for creep/recovery testing of asphalt mixtures. Constr. Build. Mater. 36, 458–466 (2012)

    Article  Google Scholar 

  • Chen, P., Fan, X., Yang, Q., Zhang, Z., Jia, Z., Liu, Q.: Creep behavior and microstructural evolution of 8030 aluminum alloys compressed at intermediate temperature. J. Mater. Res. Technol. 12, 1755–1761 (2021)

    Article  Google Scholar 

  • Colombaro, I., Garra, R., Giusti, A., Mainardi, F.: Scott-blair models with time-varying viscosity. Appl. Math. Lett. 86, 57–63 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  • Dandrea, J.C., Lakes, R.: Creep and creep recovery of cast aluminum alloys. Mech. Time-Depend. Mater. 13(4), 303–315 (2009)

    Article  Google Scholar 

  • Di Paola, M., Pirrotta, A., Valenza, A.: Visco-elastic behavior through fractional calculus: an easier method for best fitting experimental results. Mech. Mater. 43(12), 799–806 (2011)

    Article  Google Scholar 

  • Gao, Y., Yin, D.: A full-stage creep model for rocks based on the variable-order fractional calculus. Appl. Math. Model. 95, 435–446 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  • Haj-Ali, R.M., Muliana, A.H.: A multi-scale constitutive formulation for the nonlinear viscoelastic analysis of laminated composite materials and structures. Int. J. Solids Struct. 41(13), 3461–3490 (2004)

    Article  MATH  Google Scholar 

  • Hajikarimi, P., Nejad, F.M., Khodaii, A., Fini, E.H.: Introducing a stress-dependent fractional nonlinear viscoelastic model for modified asphalt binders. Constr. Build. Mater. 183, 102–113 (2018)

    Article  Google Scholar 

  • Hanyga, A., Seredyńska, M.: Multiple-integral viscoelastic constitutive equations. Int. J. Non-Linear Mech. 42(5), 722–732 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  • Hei, X., Chen, W., Pang, G., Xiao, R., Zhang, C.: A new visco–elasto-plastic model via time–space fractional derivative. Mech. Time-Depend. Mater. 22(1), 129–141 (2018)

    Article  Google Scholar 

  • Luo, X., Ma, F., Birgisson, B., Huang, Z.: Coupled mechanical and kinetic modeling of recovery in asphalt mixtures. Constr. Build. Mater. 254, 118889 (2020)

    Article  Google Scholar 

  • Mendiguren, J., Cortés, F., Galdos, L.: A generalised fractional derivative model to represent elastoplastic behaviour of metals. Int. J. Mech. Sci. 65(1), 12–17 (2012)

    Article  Google Scholar 

  • Nutting, P.: A new general law of deformation. J. Franklin Inst. 191(5), 679–685 (1921)

    Article  Google Scholar 

  • Oeser, M., Pellinen, T., Scarpas, T., Kasbergen, C.: Studies on creep and recovery of rheological bodies based upon conventional and fractional formulations and their application on asphalt mixture. Int. J. Pavement Eng. 9(5), 373–386 (2008)

    Article  Google Scholar 

  • Onaran, K., Findley, W.N.: Experimental determination of some kernel functions in the multiple integral method for nonlinear creep of polyvinyl chloride. J. Appl. Mech. 38(1), 30–38 (1971). https://doi.org/10.1115/1.3408763. https://asmedigitalcollection.asme.org/appliedmechanics/article-pdf/38/1/30/5451056/30_1.pdf

    Article  Google Scholar 

  • Ornaghi, H.L. Jr., Almeida, J.H.S. Jr., Monticeli, F.M., Neves, R.M.: Stress relaxation, creep, and recovery of carbon fiber non-crimp fabric composites. Compos. Part C, Open Access 3, 100051 (2020)

    Article  Google Scholar 

  • Peng, Y., Zhao, J., Sepehrnoori, K., Li, Z.: Fractional model for simulating the viscoelastic behavior of artificial fracture in shale gas. Eng. Fract. Mech. 228, 106892 (2020)

    Article  Google Scholar 

  • Podlubny, I.: Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications. Elsevier, Amsterdam (1998)

    MATH  Google Scholar 

  • Ribeiro, J.G.T., de Castro, J.T.P., Meggiolaro, M.A.: Modeling concrete and polymer creep using fractional calculus. J. Mater. Res. Technol. 12, 1184–1193 (2021)

    Article  Google Scholar 

  • Rouzegar, J., Gholami, M.: Creep and recovery of viscoelastic laminated composite plates. Compos. Struct. 181, 256–272 (2017)

    Article  Google Scholar 

  • Schapery, R.A.: On the characterization of nonlinear viscoelastic materials. Polym. Eng. Sci. 9(4), 295–310 (1969)

    Article  Google Scholar 

  • Schiessel, H., Metzler, R., Blumen, A., Nonnenmacher, T.: Generalized viscoelastic models: their fractional equations with solutions. J. Phys. A, Math. Gen. 28(23), 6567 (1995)

    Article  MATH  Google Scholar 

  • Stiassnie, M.: On the application of fractional calculus for the formulation of viscoelastic models. Appl. Math. Model. 3(4), 300–302 (1979)

    Article  MATH  Google Scholar 

  • Van Bockstaele, F., De Leyn, I., Eeckhout, M., Dewettinck, K.: Non-linear creep-recovery measurements as a tool for evaluating the viscoelastic properties of wheat flour dough. J. Food Eng. 107(1), 50–59 (2011)

    Article  Google Scholar 

  • Wu, F., Zhang, H., Zou, Q., Li, C., Chen, J., Gao, R.: Viscoelastic-plastic damage creep model for salt rock based on fractional derivative theory. Mech. Mater. 150, 103600 (2020)

    Article  Google Scholar 

  • Xu, F., Zeng, N., Cheng, K., Wang, X., Long, S., Ding, Y., Yang, C.: A study of the nanoindentation creep behavior of (La0.5Ce0.5)65Al10Co25 metallic glass based on fractional differential rheological model. J. Non-Cryst. Solids 490, 50–60 (2018)

    Article  Google Scholar 

  • Xu, H., Jiang, X.: Creep constitutive models for viscoelastic materials based on fractional derivatives. Comput. Math. Appl. 73(6), 1377–1384 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  • Zhang, W., Capilnasiu, A., Sommer, G., Holzapfel, G.A., Nordsletten, D.A.: An efficient and accurate method for modeling nonlinear fractional viscoelastic biomaterials. Comput. Methods Appl. Mech. Eng. 362, 112834 (2020)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (Grant No. 11801221) and the Natural Science Foundation of Jiangsu Province (Grant No. BK20180586).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenping Fan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, W., Huang, Y. Modeling creep and creep recovery of 332 aluminum alloy using fractional calculus. Mech Time-Depend Mater 27, 35–44 (2023). https://doi.org/10.1007/s11043-021-09528-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11043-021-09528-7

Keywords

Mathematics Subject Classification (2020)

Navigation