Skip to main content
Log in

Experimental and numerical investigation of energy dissipation in elastomeric rotational joint under harmonic loading

  • Published:
Mechanics of Time-Dependent Materials Aims and scope Submit manuscript

Abstract

This paper focuses on energy losses caused by inner damping and friction in an elastomeric rotational joint. A description of the design of a new experimental device intended to characterize dynamic stiffness in rotational elastomeric joint is presented. An original method based on Lagrange’s equations, which allows accurately measuring forces and torques only with accelerometers, is proposed in order to identify dissipated energy in the rotational elastomeric joint. A rheological model developed taking into account dependence of the torque and the angular displacement (rotation). Experimental results and simulations used to quantify the dissipated energy in order to evaluate the damping ratio are presented and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  • Almajid, A.: Harmonic response of a structure mounted on an isolator modeled with a hysteretic operator: experiments and prediction. J. Sound Vib. 277(1–2), 391–403 (2004)

    Article  Google Scholar 

  • Barbosa, F., Farage, M.: A finite element model for sandwich viscoelastic beams: experimental and numerical assessment. J. Sound Vib. 317(1–2), 91–111 (2008)

    Article  Google Scholar 

  • Cantournet, S., Desmorat, R., Besson, J.: Mullins effect and cyclic stress softening of filled elastomers by internal sliding and friction thermodynamics model. Int. J. Solids Struct. 46(11–12), 2255–2264 (2009)

    Article  MATH  Google Scholar 

  • Castello, D., Rochinha, F., Roitman, N., Magluta, C.: Constitutive parameter estimation of a viscoelastic model with internal variables. Mech. Syst. Signal Process. 22(8), 1840–1857 (2008)

    Article  Google Scholar 

  • Coveney, V.A., Johnson, D.E., Turner, D.M.: A triboelastic model for the cyclic mechanical behavior of filled vulcanizates. Rubber Chem. Technol. 68(4), 660–670 (1995)

    Article  Google Scholar 

  • Dahl, P.R.: A solid friction model, The Aerospace Corporation, El-Secundo, TOR-158(H3107-18), California, 1968

  • De Wit, C.C., Olsson, H., Astrom, K.J., Lischinsky, P.: A new model for control of systems with friction. IEEE Trans. Autom. Control 40(3), 419–425 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  • Dion, J.L., Chevallier, G., Penas, O., Renaud, F.: A new multicontact tribometer for deterministic dynamic friction identification. Wear 300(1), 126–135 (2013)

    Article  Google Scholar 

  • Gandhi, F., Chopra, I.: A time-domain non-linear viscoelastic damper model. Smart Mater. Struct. 5(5), 517–528 (1996)

    Article  Google Scholar 

  • Hu, W., Wereley, N.M.: Distributed rate-dependent elastoslide model for elastomeric lag dampers. J. Aircr. 44(6), 1972–1984 (2007)

    Article  Google Scholar 

  • Huynh, A., Argoul, P., Point, N., Dion, J.L.: Rheological models using fractional derivatives for linear viscoelastic materials: application to identification of the behavior of elastomers. In: Proceedings of VISHNO-13th Vibrations Shocks and Noise Conferences, Lyon, France (2002)

    Google Scholar 

  • Jrad, H., Dion, J.-L., Renaud, F., Tawfiq, I., Haddar, M.: Experimental characterization, modeling and parametric identification of the nonlinear dynamic behavior of viscoelastic components. Eur. J. Mech. A, Solids 42, 176–187 (2013a)

    Article  Google Scholar 

  • Jrad, H., Renaud, F., Dion, J.-L., Tawfiq, I., Haddar, M.: Experimental characterization, modeling and parametric identification of the hysteretic friction behavior of viscoelastic joints. Int. J. Appl. Mech. 5(2), 1350018 (2013b) (1–22)

    Article  Google Scholar 

  • Lampaert, V., Swevers, J., Al-Bender, F.: Modification of the Leuven integrated friction model structure. IEEE Trans. Autom. Control 47(4), 683–687 (2002)

    Article  MathSciNet  Google Scholar 

  • Lesieutre, G.A., Bianchini, E.: Time domain modeling of linear viscoelasticity using augmenting thermodynamic fields. In: Proceedings of the 34th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference. La, Jolla, CA, 1993 (1993)

    Google Scholar 

  • Lesieutre, G.A., Mingori, D.L.: Finite element modeling of frequency-dependent material damping using augmenting thermodynamic fields. J. Guid. Control Dyn. 13(6), 1040–1050 (1990)

    Article  MATH  Google Scholar 

  • Luo, W., Hu, X., Wang, C., Li, Q.: Frequency- and strain-amplitude-dependent dynamical mechanical properties and hysteresis loss of CB-filled vulcanized natural rubber. Int. J. Mech. Sci. 52(2), 168–174 (2010)

    Article  Google Scholar 

  • Liu, M., Hoo Fatt, M.S.: A constitutive equation for filled rubber under cyclic loading. Int. J. Non-Linear Mech. 46(2), 446–456 (2011)

    Article  Google Scholar 

  • Mindlin, R.D.: Compliance of elastic bodies in contact. J. Appl. Mech. 16, 259–268 (1949)

    MathSciNet  MATH  Google Scholar 

  • Oustaloup, A.: La commande CRONE: commande robuste d’ordre non entier. Hermés (1991)

  • Panda, B., Mychalowycz, E., Tarzanin, F.J.: Application of passive dampers to modern helicopters. Smart Mater. Struct. 5(5), 509–516 (1996)

    Article  Google Scholar 

  • Park, S.W.: Analytical modeling of viscoelastic dampers for structural and vibration control. Int. J. Solids Struct. 38(44–45), 8065–8092 (2001)

    Article  MATH  Google Scholar 

  • Peyret, N., Dion, J.L., Chevallier, G., Argoul, P.: Microslip induced damping in planar contact under constant and uniform normal stress. Int. J. Appl. Mech. 2(2), 281–304 (2010)

    Article  Google Scholar 

  • Popov, V.L., Geike, T.: A new constitutive model of rubber. Tribol. Int. 40(6), 1012–1016 (2007)

    Article  Google Scholar 

  • Ramrakhyani, D.S., Lesieutre, G.A., Smith, E.C.: Modeling of elastomeric materials using nonlinear fractional derivative and continuously yielding friction elements. Int. J. Solids Struct. 41(14), 3929–3948 (2004)

    Article  MATH  Google Scholar 

  • Renaud, F., Dion, J.L., Chevallier, G., Tawfiq, I., Lemaire, R.: A new identification method of viscoelastic behavior: application to the generalized Maxwell model. Mech. Syst. Signal Process. 25(3), 991–1010 (2011)

    Article  Google Scholar 

  • Rendek, M., Lion, A.: Amplitude dependence of filler-reinforced rubber: experiments, constitutive modelling and FEM – implementation. Int. J. Solids Struct. 47, 2918–2936 (2010)

    Article  MATH  Google Scholar 

  • Saad, P., Al Majid, A., Thouverez, F., Dufour, R.: Equivalent rheological and restoring force models for predicting the harmonic response of elastomer specimens. J. Sound Vib. 290(3), 619–639 (2006)

    Article  Google Scholar 

  • Segalman, D.J.: A four-parameter Iwan model for lap-type joints. Int. J. Appl. Mech. 72(5), 752–760 (2005)

    Article  MATH  Google Scholar 

  • Segalman, D.J.: Modelling joint friction in structural dynamics. Struct. Control Health Monit. 13, 430–453 (2006)

    Article  Google Scholar 

  • Skouvaklis, G., Blackford, J.R., Koutsos, V.: Friction of rubber on ice: a new machine, influence of rubber properties and sliding parameters. Tribol. Int. 49, 44–52 (2012)

    Article  Google Scholar 

  • Snyder, R.A., Kamath, G.M., and Wereley, N.M.: Characterization and analysis of magnetorheological damper behavior under sinusoidal loading. AIAA J. 39(7), 1240–1253 (2001)

    Article  Google Scholar 

  • Strganac, T.W.: An experiment and analytical methodology to characterize nonlinear elastomeric lag dampers. In: Proceeding of the 38th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Material Conference, Orlando, Florida, April (1997)

    Google Scholar 

  • Thaijaroen, W., Harrison, A.J.L.: Nonlinear dynamic modelling of rubber isolators using six parameters based on parabolic spring, spring pot, and smooth-slip friction element. Polym. Test. 29(7), 857–865 (2010)

    Article  Google Scholar 

  • Tarzanin, F.J., Panda, B.: Development and application of nonlinear elastomeric and hydraulic lag damper models. In: Proceedings of the 36th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, New Orleans, Louisiana, April (1995)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hanen Jrad.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jrad, H., Dion, J.L., Renaud, F. et al. Experimental and numerical investigation of energy dissipation in elastomeric rotational joint under harmonic loading. Mech Time-Depend Mater 21, 177–198 (2017). https://doi.org/10.1007/s11043-016-9325-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11043-016-9325-9

Keywords

Navigation