Skip to main content
Log in

Incremental constitutive formulation for time dependent materials: creep integral approach

  • Published:
Mechanics of Time-Dependent Materials Aims and scope Submit manuscript

Abstract

This paper deals with the development of a mathematical approach for the solution of linear, non-ageing viscoelastic materials undergoing mechanical deformation. The formulation is derived from integral approach based on a discrete spectrum representation for the creep tensor. Finite difference integration is used to discretize the integral operators. The resulting constitutive model contains an internal state variable which represents the influence of the whole past history of stress and strain. Thus the difficulty of retaining the strain history in computer solutions is avoided. A complete general formulation of linear viscoelastic stress-strain analysis is developed in terms of increments of stresses and strains. Numerical simulations are included in order to validate the incremental constitutive equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Boltzmann, L.: Zur Theorie der elastischen Nachwirkung Sitzungsber. Mat Naturwiss. Kl. Kaiser. Akad. Wiss. 70, 275 (1878)

    Google Scholar 

  • Brinson, L.C., Knauss, W.G.: Finite element analysis of multiphase viscoelastic solids. J. Appl. Mech. 59, 730–737 (1992)

    Article  Google Scholar 

  • Chazal, C., Dubois, F.: A new incremental formulation in the time domain for crack initiation in an orthotropic linearly viscoelastic solid. Mech. Time-Depend. Mater. 5(3), 229–253 (2001). doi:10.1023/A:1017922223094

    Article  Google Scholar 

  • Chazal, C., Moutou Pitti, R.: An incremental constitutive law for ageing viscoelastic materials: a three-dimensional approach. C. R. Acad. Sci., Méc. 337, 30–33 (2009a). doi:10.1016/j.crme.2008.12.002

    MATH  Google Scholar 

  • Chazal, C., Moutou Pitti, R.: A new incremental formulation for linear viscoelastic analysis: creep differential approach. J. Theor. Appl. Mech. 47(2), 397–409 (2009b)

    Google Scholar 

  • Chazal, C., Moutou Pitti, R.: Viscoelastic incremental formulation using creep and relaxation differential approaches. Mech. Time-Depend. Mater. 14(2), 173–190 (2010a). doi:10.1007/s11043-009-9101-1

    Article  Google Scholar 

  • Chazal, C., Moutou Pitti, R.: Modelling of ageing viscoelastic materials in three dimensional finite element approach. Int. J. Theor. Appl. Mech. (2010b). doi:10.1007/s11012-009-9244-9

    Google Scholar 

  • Christensen, R.M.: A nonlinear theory of viscoelasticity for application to elastomers. J. Appl. Mech. 47, 762–768 (1980a)

    Article  MATH  Google Scholar 

  • Christensen, R.M.: Theory of Viscoelasticity: An Introduction. Academic Press, New York (1980b)

    Google Scholar 

  • Dubois, F., Chazal, C., Petit, C.: A finite element analysis of creep crack growth in viscoelastic media. Mech. Time-Depend. Mater. 2, 269–286 (1998). doi:10.1023/A:1009831400270

    Article  Google Scholar 

  • Dubois, F., Chazal, C., Petit, C.: Viscoelastic crack growth process in wood timbers: an approach by the finite element method for mode I fracture. Int. J. Fract. 113, 367–388 (2002)

    Article  Google Scholar 

  • Duenwald, S.E. Jr., Lakes, R.S.: Constitutive equations for ligament and other soft tissue: evaluation by experiment. Acta Mech. (2009). doi:10.1007/s00707-009-0161-8

    MATH  Google Scholar 

  • Filograna, L., Racioppi, M., Saccomandi, G., Sgura, L.: A simple model of nonlinear viscoelasticity taking into account stress relaxation. Acta Mech. 204, 21–36 (2009)

    Article  MATH  Google Scholar 

  • Ghazlan, G., Caperaa, S., Petit, C.: An incremental formulation for the linear analysis of thin viscoelastic structures using generalized variables. Int. J. Numer. Methods Eng. 38(19), 3315–3333 (1995)

    Article  MATH  Google Scholar 

  • Johnson, A.R., Tessler, A., Dambach, M.: Dynamics of thick viscoelastic beams. J. Eng. Mater. Technol. 119, 273–278 (1997)

    Article  Google Scholar 

  • Krishnaswamy, P., Tuttle, M.E., Emery, A.F., Ahmad, J.: Finite element modelling of crack tip behavior in viscoelastic materials. Part I: linear behaviour. Int. J. Numer. Methods Eng. 30, 371–387 (1990)

    Article  MATH  Google Scholar 

  • Krishnaswamy, P., Tuttle, M.E., Emery, A.F., Ahmad, J.: Finite element modelling of the time-dependent behaviour of non-linear ductile polymers. Polym. Eng. Sci. 32, 1086–1096 (1992)

    Article  Google Scholar 

  • Lee, E.H., Radok, J.R.M., Woodward, W.B.: Stress analysis for linear viscoelastic materials. Trans. R. Soc. 3, 1–59 (1959)

    MathSciNet  Google Scholar 

  • Linz, P.: Analytical and Numerical Methods for Volterra Equations. SIAM, Philadelphia (1985)

    MATH  Google Scholar 

  • Mandel, J.: Dissipativité normale et variables caches. Mech. Res. Commun. 5, 225–229 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  • Merodio, J.: On constitutive equations for fiber-reinforced nonlinearly viscoelastic solids. Mech. Res. Commun. 33, 764–770 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  • Moran, B., Knauss, W.G.: Crack-tip stress and deformation fields in strain-softening nonlinearly viscoelastic materials. J. Appl. Mech. 59, 95–101 (1992)

    Article  Google Scholar 

  • Moutou Pitti, R., Dubois, F., Petit, C., Sauvat, N., Pop, O.: A new M integral parameter for mixed mode crack growth in orthotropic viscoelastic material. Eng. Fract. Mech. 75, 4450–4465 (2008)

    Article  Google Scholar 

  • Shaw, S., Warby, M.K., Whiteman, J.R., Dawson, C., Wheeler, M.F.: Numerical techniques for the treatment of quasistatic viscoelastic stress problems in linear isotropic solids. Comput. Methods Appl. Mech. Eng. 118, 211–237 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  • Stouffer, D.C., Wineman, A.S.: A constitutive representation for linear ageing environmental-dependent viscoelastic materials. Acta Mech. 13, 31–53 (1972)

    Article  MATH  Google Scholar 

  • Taylor, R.L., Pister, K.S., Gourdreau, G.L.: Thermomechanical analysis of viscoelastic solids. Int. J. Numer. Methods Eng. 2, 45–59 (1970)

    Article  MATH  Google Scholar 

  • Whiteman, J.R., Beagles, A.E., Warby, M.K.: Theoretical and practical aspects of finite elements in the context of some problems of solid mechanics. Jber. D. Dt. Math.-Verein 92, 77–88 (1990)

    MathSciNet  MATH  Google Scholar 

  • Zienkiewicz, O.C.: The Finite Element Method. McGraw-Hill, New York (1985)

    Google Scholar 

  • Zienkiewicz, O.C., Watson, M., King, I.P.: A numerical method of viscoelastic stress analysis. Int. J. Mech. Sci. 10, 807–827 (1968)

    Article  Google Scholar 

  • Zocher, M.A., Groves, S.E., Hellen, D.H.: A Three-dimensional finite element formulation for thermoviscoelastic orthotropic media. Int. J. Numer. Methods Eng. 40, 2267–2288 (1997)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claude Chazal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chazal, C., Moutou Pitti, R. Incremental constitutive formulation for time dependent materials: creep integral approach. Mech Time-Depend Mater 15, 239–253 (2011). https://doi.org/10.1007/s11043-011-9135-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11043-011-9135-z

Keywords

Navigation