Skip to main content
Log in

Extracting Radiomic features from pre-operative and segmented MRI scans improved survival prognosis of glioblastoma Multiforme patients through machine learning: a retrospective study

  • Track 2: Medical Applications of Multimedia
  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

The combination of radiomics and artificial intelligence has emerged as a strong technique for building predictive models in radiology. This study aims to address the clinically important issue of whether a radiomic profile can predict the overall survival (OS) time of glioblastoma multiforme (GBM) patients having gross tumor resection (GTR) through pre-operative structural magnetic resonance imaging (MRI) scans. A retrospective analysis was made using data of glioma patients made publicly available by the University of Pennsylvania. The radiomic characteristics were extracted from pre-operative structural multiparametric MRI (mpMRI) sequences after pre-processing and 3D segmentation using deep learning (DL). After removing irrelevant features, regression models based on machine learning (ML) were developed by considering selected features to predict the OS time of GBM patients within a period of days only. The patients were divided into three survivor groups depending on their projected survival time. To validate the significance of the selected feature set, statistical analysis was performed. As many as 494 patients were considered to improve survival prediction (SP) by using more effective feature extraction and selection techniques. The ridge regressor acquired the highest SpearmanR Rank correlation of 0.635 with an accuracy of 69%, the greatest of all the previous works for categorical predictions of such patients. The researchers in the past who used radiomic characteristics for the OS prognosis of GBM patients could yield limited results only. However, the current research work recorded an enhanced accuracy and SpearmanR rank for the three survivor classes of GBM patients using ML, feature selection, and radiomics. The significance of this work lies in the selection of patients with GTR and the extraction of radiomic characteristics through the use of radiomics and artificial intelligence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

https://www.med.upenn.edu/cbica/brats2020/data.html

References

  1. Aftab K, Aamir FB, Mallick S, Mubarak F, Pope WB, Mikkelsen T, Rock JP, Enam SA (2022 Jan 12) Radiomics for precision medicine in glioblastoma. J Neuro-Oncol 156:217–231. https://doi.org/10.1007/s11060-021-03933-1

  2. Agravat RR, Raval MS (2021) 3D Semantic Segmentation of Brain Tumor for Overall Survival Prediction. In: Crimi A, Bakas S (eds) Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries, vol 12659. Springer International Publishing, Cham, pp 215–227. (Lecture Notes in Computer Science). https://doi.org/10.1007/978-3-030-72087-2_19

    Chapter  Google Scholar 

  3. Akbar AS, Fatichah C, Suciati N (2021) Modified MobileNet for Patient Survival Prediction. In: Crimi A, Bakas S (eds) Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries, vol 12659. Springer International Publishing, Cham, pp 374–387. (Lecture Notes in Computer Science. https://doi.org/10.1007/978-3-030-72087-2_33

    Chapter  Google Scholar 

  4. Ali MJ, Akram MT, Saleem H, Raza B, Shahid AR (2021) Glioma Segmentation Using Ensemble of 2D/3D U-Nets and Survival Prediction Using Multiple Features Fusion. In: Crimi A, Bakas S (eds) Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries, vol 12659. Springer International Publishing, Cham, pp 189–199. (Lecture Notes in Computer Science. https://doi.org/10.1007/978-3-030-72087-2_17

    Chapter  Google Scholar 

  5. Anand VK, Grampurohit S, Aurangabadkar P, Kori A, Khened M, Bhat RS, Krishnamurthi G (2021) Brain Tumor Segmentation and Survival Prediction Using Automatic Hard Mining in 3D CNN Architecture. In: Crimi A, Bakas S (eds) Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries, vol 12659. Springer International Publishing, Cham, pp 310–319. (Lecture Notes in Computer Science. https://doi.org/10.1007/978-3-030-72087-2_27

    Chapter  Google Scholar 

  6. Bakas S, Akbari H, Sotiras A, Bilello M, Rozycki M, Kirby J, Freymann J, Farahani K, Davatzikos C (2017) Segmentation Labels for the Pre-operative Scans of the TCGA-GBM collection. The Cancer Imaging Archive. https://wiki.cancerimagingarchive.net/x/KoZyAQ

  7. Bakas S, Akbari H, Sotiras A, Bilello M, Rozycki M, Kirby JS, Freymann JB, Farahani K, Davatzikos C (2017) Advancing the Cancer genome atlas glioma MRI collections with expert segmentation labels and radiomic features. Scientific Data 4:170117. https://doi.org/10.1038/sdata.2017.117

    Article  Google Scholar 

  8. Bakas S, Reyes M, Jakab A, Bauer S, Rempfler M, Crimi A, Shinohara RT, Berger C, Ha SM, Rozycki M (2018) Identifying the best machine learning algorithms for brain tumor segmentation, progression assessment, and overall survival prediction in the BRATS challenge. arXiv preprint arXiv:1811.02629. http://arxiv.org/abs/1811.02629

  9. Bennett IE, Field KM, Hovens CM, Moffat BA, Rosenthal MA, Drummond K, Kaye AH, Morokoff AP (2017) Early perfusion MRI predicts survival outcome in patients with recurrent glioblastoma treated with bevacizumab and carboplatin. J Neuro-Oncol 131(2):321–329. https://doi.org/10.1007/s11060-016-2300-0

    Article  Google Scholar 

  10. Bhuyan HK, Ravi V (2021) Analysis of subfeature for classification in data mining. IEEE Trans Eng Manag:1–15. https://doi.org/10.1109/TEM.2021.3098463

  11. Bhuyan HK, Reddy CVM (2018) Sub-Feature Selection for Novel Classification. In: 2018 Second International Conference on Inventive Communication and Computational Technologies (ICICCT). p. 477–482. https://doi.org/10.1109/ICICCT.2018.8473206

  12. Bhuyan HK, Chakraborty C, Shelke Y, Pani SK (2022) COVID-19 diagnosis system by deep learning approaches. Expert Syst 39(3):e12776. https://doi.org/10.1111/exsy.12776

    Article  Google Scholar 

  13. Bleeker FE, Molenaar RJ, Leenstra S (2012) Recent advances in the molecular understanding of glioblastoma. J Neuro-Oncol 108(1):11–27. https://doi.org/10.1007/s11060-011-0793-0

    Article  Google Scholar 

  14. Carmo D, Rittner L, Lotufo R (2021) MultiATTUNet: Brain Tumor Segmentation and Survival Multitasking. In: Crimi A, Bakas S (eds) Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries, vol 12658. Springer International Publishing, Cham, pp 424–434. (Lecture Notes in Computer Science. https://doi.org/10.1007/978-3-030-72084-1_38

    Chapter  Google Scholar 

  15. Cepeda S, Pérez-Nuñez A, García-García S, García-Pérez D, Arrese I, Jiménez-Roldán L, García-Galindo M, González P, Velasco-Casares M, Zamora T, Sarabia R (2021) Predicting short-term survival after gross Total or near Total resection in glioblastomas by machine learning-based Radiomic analysis of preoperative MRI. Cancers. 13(20):5047. https://doi.org/10.3390/cancers13205047

    Article  Google Scholar 

  16. Chambless LB, Kistka HM, Parker SL, Hassam-Malani L, McGirt MJ, Thompson RC (2015) The relative value of postoperative versus preoperative Karnofsky performance scale scores as a predictor of survival after surgical resection of glioblastoma multiforme. J Neuro-Oncol 121(2):359–364. https://doi.org/10.1007/s11060-014-1640-x

    Article  Google Scholar 

  17. Choi Y, Nam Y, Jang J, Shin N-Y, Lee YS, Ahn K-J, Kim B, Park J-S, Jeon S, Hong YG (2021) Radiomics may increase the prognostic value for survival in glioblastoma patients when combined with conventional clinical and genetic prognostic models. Eur Radiol 31(4):2084–2093. https://doi.org/10.1007/s00330-020-07335-1

    Article  Google Scholar 

  18. Çiçek Ö, Abdulkadir A, Lienkamp SS, Brox T, Ronneberger O (2016) 3D U-Net: Learning Dense Volumetric Segmentation from Sparse Annotation. In: Ourselin S, Joskowicz L, Sabuncu MR, Unal G, Wells W (eds) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2016. Springer International Publishing, Cham, pp 424–432. (Lecture Notes in Computer Science. https://doi.org/10.1007/978-3-319-46723-8_49

    Chapter  Google Scholar 

  19. Clavreul A, Aubin G, Delion M, Lemée J-M, Ter Minassian A, Menei P (2021) What effects does awake craniotomy have on functional and survival outcomes for glioblastoma patients? J Neuro-Oncol 151(2):113–121. https://doi.org/10.1007/s11060-020-03666-7

    Article  Google Scholar 

  20. Czarnek N, Clark K, Peters KB, Mazurowski MA (2017) Algorithmic three-dimensional analysis of tumor shape in MRI improves prognosis of survival in glioblastoma: a multi-institutional study. J Neuro-Oncol 132(1):55–62. https://doi.org/10.1007/s11060-016-2359-7

    Article  Google Scholar 

  21. Dai C, Wang S, Raynaud H, Mo Y, Angelini E, Guo Y, Bai W (2021) Self-training for Brain Tumour Segmentation with Uncertainty Estimation and Biophysics-Guided Survival Prediction. In: Crimi A, Bakas S (eds) Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries, vol 12658. Springer International Publishing, Cham, pp 514–523. (Lecture Notes in Computer Science. https://doi.org/10.1007/978-3-030-72084-1_46

    Chapter  Google Scholar 

  22. De Barros A, Attal J, Roques M, Nicolau J, Sol J-C, Cohen-Jonathan-Moyal E, Roux F-E (2019) Impact on survival of early tumor growth between surgery and radiotherapy in patients with de novo glioblastoma. J Neuro-Oncol 142(3):489–497. https://doi.org/10.1007/s11060-019-03120-3

    Article  Google Scholar 

  23. De Witt Hamer PC, Ho VKY, Zwinderman AH, Ackermans L, Ardon H, Boomstra S, Bouwknegt W, van den Brink WA, Dirven CM, van der Gaag NA et al (2019) Between-hospital variation in mortality and survival after glioblastoma surgery in the Dutch quality registry for neuro surgery. J Neuro-Oncol 144(2):313–323. https://doi.org/10.1007/s11060-019-03229-5

    Article  Google Scholar 

  24. Ferlay J, Shin H-R, Bray F, Forman D, Mathers C, Parkin DM (2010) Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. Int J Cancer 127(12):2893–2917. https://doi.org/10.1002/ijc.25516

    Article  Google Scholar 

  25. Fu J, Singhrao K, Zhong X, Gao Y, Qi SX, Yang Y, Ruan D, Lewis JH (2021) An automatic deep learning–based workflow for glioblastoma survival prediction using preoperative multimodal MR images: a feasibility study. Adv Radiat Oncol 6(5):100746. https://doi.org/10.1016/j.adro.2021.100746

    Article  Google Scholar 

  26. Fyllingen EH, Bø LE, Reinertsen I, Jakola AS, Sagberg LM, Berntsen EM, Salvesen Ø, Solheim O (2021) Survival of glioblastoma in relation to tumor location: a statistical tumor atlas of a population-based cohort. Acta Neurochir 163(7):1895–1905. https://doi.org/10.1007/s00701-021-04802-6

    Article  Google Scholar 

  27. Gibson E, Li W, Sudre C, Fidon L, Shakir DI, Wang G, Eaton-Rosen Z, Gray R, Doel T, Hu Y, Whyntie T, Nachev P, Modat M, Barratt DC, Ourselin S, Cardoso MJ, Vercauteren T (2018) NiftyNet: a deep-learning platform for medical imaging. Comput Methods Prog Biomed 158:113–122. https://doi.org/10.1016/j.cmpb.2018.01.025

    Article  Google Scholar 

  28. Gillies RJ, Kinahan PE, Hricak H (2016) Radiomics: images are more than pictures. They Are Data Radiology 278(2):563–577. https://doi.org/10.1148/radiol.2015151169

    Article  Google Scholar 

  29. González SR, Zemmoura I, Tauber C (2021) 3D Brain Tumor Segmentation and Survival Prediction Using Ensembles of Convolutional Neural Networks. In: Crimi A, Bakas S (eds) Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries, vol 12659. Springer International Publishing, Cham, pp 241–254. (Lecture Notes in Computer Science. https://doi.org/10.1007/978-3-030-72087-2_21

    Chapter  Google Scholar 

  30. Han IS (2021) Multimodal Brain Image Analysis and Survival Prediction Using Neuromorphic Attention-Based Neural Networks. In: Crimi A, Bakas S (eds) Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries, vol 12658. Springer International Publishing, Cham, pp 194–206. (Lecture Notes in Computer Science. https://doi.org/10.1007/978-3-030-72084-1_18

    Chapter  Google Scholar 

  31. Henker C, Hiepel MC, Kriesen T, Scherer M, Glass Ä, Herold-Mende C, Bendszus M, Langner S, Weber M-A, Schneider B, Unterberg A, Piek J (2019) Volumetric assessment of glioblastoma and its predictive value for survival. Acta Neurochir 161(8):1723–1732. https://doi.org/10.1007/s00701-019-03966-6

    Article  Google Scholar 

  32. Isensee F, Kickingereder P, Wick W, Bendszus M, Maier-Hein KH (2018) Brain Tumor Segmentation and Radiomics Survival Prediction: Contribution to the BRATS 2017 Challenge. In: Crimi A, Bakas S, Kuijf H, Menze B, Reyes M (eds) Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries. Springer International Publishing, Cham, pp 287–297. (Lecture Notes in Computer Science. https://doi.org/10.1007/978-3-319-75238-9_25

    Chapter  Google Scholar 

  33. Jun W, Haoxiang X, Wang Z (2021) Brain Tumor Segmentation Using Dual-Path Attention U-Net in 3D MRI Images. In: Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries, vol 12658. Springer International Publishing, Cham, pp 183–193. (Lecture Notes in Computer Science. https://doi.org/10.1007/978-3-030-72084-1_17

    Chapter  Google Scholar 

  34. Kudulaiti N, Zhou Z, Luo C, Zhang J, Zhu F, Wu J (2021) A nomogram for individualized prediction of overall survival in patients with newly diagnosed glioblastoma: a real-world retrospective cohort study. BMC Surg 21(1):238. https://doi.org/10.1186/s12893-021-01233-z

    Article  Google Scholar 

  35. Li H, Li A, Wang M (2019) A novel end-to-end brain tumor segmentation method using improved fully convolutional networks. Comput Biol Med 108:150–160. https://doi.org/10.1016/j.compbiomed.2019.03.014

    Article  Google Scholar 

  36. Liu L, Zhang H, Wu J, Yu Z, Chen X, Rekik I, Wang Q, Lu J, Shen D (2019) Overall survival time prediction for high-grade glioma patients based on large-scale brain functional networks. Brain Imaging Behav 13(5):1333–1351. https://doi.org/10.1007/s11682-018-9949-2

    Article  Google Scholar 

  37. Liu L, Jiang H, He P, Chen W, Liu X, Gao J, Han J (2020 Apr 17) On the Variance of the Adaptive Learning Rate and Beyond. arXiv:1908.03265 [cs, stat]. http://arxiv.org/abs/1908.03265

  38. Menze BH, Jakab A, Bauer S, Kalpathy-Cramer J, Farahani K, Kirby J, Burren Y, Porz N, Slotboom J, Wiest R, Lanczi L, Gerstner E, Weber MA, Arbel T, Avants BB, Ayache N, Buendia P, Collins DL, Cordier N, … van Leemput K (2015) The multimodal brain tumor image segmentation benchmark (BRATS). IEEE Trans Med Imaging 34(10):1993–2024. https://doi.org/10.1109/TMI.2014.2377694

    Article  Google Scholar 

  39. Miron R, Albert R, Breaban M (2021) A Two-Stage Atrous Convolution Neural Network for Brain Tumor Segmentation and Survival Prediction. In: Crimi A, Bakas S (eds) Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries, vol 12659. Springer International Publishing, Cham, pp 290–299. (Lecture Notes in Computer Science. https://doi.org/10.1007/978-3-030-72087-2_25

    Chapter  Google Scholar 

  40. Naceur MB, Saouli R, Akil M, Kachouri R (2018) Fully automatic brain tumor segmentation using end-to-end incremental deep neural networks in MRI images. Comput Methods Prog Biomed 166:39–49. https://doi.org/10.1016/j.cmpb.2018.09.007

    Article  Google Scholar 

  41. Nair V, Hinton GE (2010) Rectified linear units improve restricted boltzmann machines. In: Icml

  42. Nestler U, Lutz K, Pichlmeier U, Stummer W, Franz K, Reulen H-J, Bink A (2015) On behalf of the 5-ALA glioma study group. Anatomic features of glioblastoma and their potential impact on survival. Acta Neurochir 157(2):179–186. https://doi.org/10.1007/s00701-014-2271-x

    Article  Google Scholar 

  43. Ostrom QT, Bauchet L, Davis FG, Deltour I, Fisher JL, Langer CE, Pekmezci M, Schwartzbaum JA, Turner MC, Walsh KM, Wrensch MR, Barnholtz-Sloan JS (2014) The epidemiology of glioma in adults: a “state of the science” review. Neuro-Oncol 16(7):896–913. https://doi.org/10.1093/neuonc/nou087

    Article  Google Scholar 

  44. Pang E, Shi W, Li X, Wu Q (2021) Glioma Segmentation Using Encoder-Decoder Network and Survival Prediction Based on Cox Analysis. In: Crimi A, Bakas S (eds) Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries, vol 12658. Springer International Publishing, Cham, pp 318–326. (Lecture Notes in Computer Science. https://doi.org/10.1007/978-3-030-72084-1_29

    Chapter  Google Scholar 

  45. Parmar B, Parikh M (2021) Brain Tumor Segmentation and Survival Prediction Using Patch Based Modified 3D U-Net. In: Crimi A, Bakas S (eds) Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries, vol 12659. Springer International Publishing, Cham, pp 398–409. (Lecture Notes in Computer Science. https://doi.org/10.1007/978-3-030-72087-2_35

    Chapter  Google Scholar 

  46. Patel J, Chang K, Hoebel K, Gidwani M, Arun N, Gupta S, Aggarwal M, Singh P, Rosen BR, Gerstner ER et al (2021) Segmentation, Survival Prediction, and Uncertainty Estimation of Gliomas from Multimodal 3D MRI Using Selective Kernel Networks. In: Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries, vol 12659. Springer International Publishing, Cham, pp 228–240. (Lecture Notes in Computer Science. https://doi.org/10.1007/978-3-030-72087-2_20

    Chapter  Google Scholar 

  47. Pei L, Vidyaratne L, Rahman MM, Iftekharuddin KM (2020) Context aware deep learning for brain tumor segmentation, subtype classification, and survival prediction using radiology images. Sci Rep 10(1):19726. https://doi.org/10.1038/s41598-020-74419-9

    Article  Google Scholar 

  48. Pei L, Murat AK, Colen R (2021) Multimodal Brain Tumor Segmentation and Survival Prediction Using a 3D Self-ensemble ResUNet. In: Crimi A, Bakas S (eds) Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries, vol 12658. Springer International Publishing, Cham, pp 367–375. (Lecture Notes in Computer Science. https://doi.org/10.1007/978-3-030-72084-1_33

    Chapter  Google Scholar 

  49. Ribalta Lorenzo P, Nalepa J, Bobek-Billewicz B, Wawrzyniak P, Mrukwa G, Kawulok M, Ulrych P, Hayball MP (2019) Segmenting brain tumors from FLAIR MRI using fully convolutional neural networks. Comput Methods Prog Biomed 176:135–148. https://doi.org/10.1016/j.cmpb.2019.05.006

    Article  Google Scholar 

  50. Russo C, Liu S, Di Ieva A (2021) Impact of Spherical Coordinates Transformation Pre-processing in Deep Convolution Neural Networks for Brain Tumor Segmentation and Survival Prediction. In: Crimi A, Bakas S (eds) Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries, vol 12658. Springer International Publishing, Cham, pp 295–306. (Lecture Notes in Computer Science. https://doi.org/10.1007/978-3-030-72084-1_27

    Chapter  Google Scholar 

  51. Selvapandian A, Manivannan K (2018) Fusion based glioma brain tumor detection and segmentation using ANFIS classification. Comput Methods Prog Biomed 166:33–38. https://doi.org/10.1016/j.cmpb.2018.09.006

    Article  Google Scholar 

  52. Sfifou F, Hakkou EM, Bouaiti EA, Slaoui M, Errihani H, Al Bouzidi A, Abouqal R, El Ouahabi A, Cherradi N (2021) Correlation of immunohistochemical expression of HIF-1alpha and IDH1 with clinicopathological and therapeutic data of moroccan glioblastoma and survival analysis. Annals of Medicine and Surgery 69:102731. https://doi.org/10.1016/j.amsu.2021.102731

    Article  Google Scholar 

  53. Sharma N, Aggarwal LM (2010) Automated medical image segmentation techniques. J Medical Phys 35(1):3–14. https://doi.org/10.4103/0971-6203.58777

    Article  Google Scholar 

  54. Sharma A, Mishra PK (2020) State-of-the-Art in Performance Metrics and Future Directions for Data Science Algorithms. J Sci Res 64(02):221–238. https://doi.org/10.37398/JSR.2020.640232

    Article  Google Scholar 

  55. Soltaninejad M, Yang G, Lambrou T, Allinson N, Jones TL, Barrick TR, Howe FA, Ye X (2018) Supervised learning based multimodal MRI brain tumour segmentation using texture features from supervoxels. Comput Methods Prog Biomed 157:69–84. https://doi.org/10.1016/j.cmpb.2018.01.003

    Article  Google Scholar 

  56. Soltaninejad M, Pridmore T, Pound M (2021) Efficient MRI Brain Tumor Segmentation Using Multi-resolution Encoder-Decoder Networks. In: Crimi A, Bakas S (eds) Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries, vol 12659. Springer International Publishing, Cham, pp 30–39. (Lecture Notes in Computer Science. https://doi.org/10.1007/978-3-030-72087-2_3

    Chapter  Google Scholar 

  57. Suter Y, Knecht U, Alão M, Valenzuela W, Hewer E, Schucht P, Wiest R, Reyes M (2020) Radiomics for glioblastoma survival analysis in pre-operative MRI: exploring feature robustness, class boundaries, and machine learning techniques. Cancer Imaging 20(1):55. https://doi.org/10.1186/s40644-020-00329-8

    Article  Google Scholar 

  58. van Griethuysen JJM, Fedorov A, Parmar C, Hosny A, Aucoin N, Narayan V, Beets-Tan RGH, Fillion-Robin J-C, Pieper S, Aerts HJWL (2017) Computational Radiomics system to decode the radiographic phenotype. Cancer Res 77(21):e104–e107. https://doi.org/10.1158/0008-5472.CAN-17-0339

    Article  Google Scholar 

  59. Wang G, Li W, Ourselin S, Vercauteren T (2018) Automatic Brain Tumor Segmentation Using Cascaded Anisotropic Convolutional Neural Networks. In: Crimi A, Bakas S, Kuijf H, Menze B, Reyes M (eds) Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries. Springer International Publishing, Cham, pp 178–190. (Lecture Notes in Computer Science. https://doi.org/10.1007/978-3-319-75238-9_16

    Chapter  Google Scholar 

  60. Whitmire P, Rickertsen CR, Hawkins-Daarud A, Carrasco E, Lorence J, De Leon G, Curtin L, Bayless S, Clark-Swanson K, Peeri NC et al (2020) Sex-specific impact of patterns of imageable tumor growth on survival of primary glioblastoma patients. BMC Cancer 20(1):447. https://doi.org/10.1186/s12885-020-06816-2

    Article  Google Scholar 

  61. Wu Y, He K (2018) Group Normalization. In: Proceedings of the European Conference on Computer Vision (ECCV). p. 3–19. https://openaccess.thecvf.com/content_ECCV_2018/html/Yuxin_Wu_Group_Normalization_ECCV_2018_paper.html

  62. Zhao G, Jiang B, Zhang J, Xia Y (2021) Segmentation then Prediction: A Multi-task Solution to Brain Tumor Segmentation and Survival Prediction. In: Crimi A, Bakas S (eds) Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries, vol 12658. Springer International Publishing, Cham, pp 492–502. (Lecture Notes in Computer Science. https://doi.org/10.1007/978-3-030-72084-1_44

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization—Gurinderjeet Kaur.

Methodology—Gurinderjeet Kaur.

Formal analysis and investigation—Gurinderjeet Kaur, Prashant Singh Rana, Vinay Arora.

Writing (original draft preparation)— Gurinderjeet Kaur.

Writing (review and editing)— Gurinderjeet Kaur, Prashant Singh Rana, Vinay Arora.

Resources— Gurinderjeet Kaur, Prashant Singh Rana, Vinay Arora.

Supervision—Prashant Singh Rana, Vinay Arora.

Corresponding author

Correspondence to Gurinderjeet Kaur.

Ethics declarations

Ethics approval

Data is publicly available and contains no patient identities; thus, no institutional review board permission was necessary. The source of data is correctly cited in the manuscript.

Consent to participate

Not applicable.

Consent for publication

Not applicable. No data, which could lead to the identification of the patient (photographs, names), was used.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 150 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaur, G., Rana, P.S. & Arora, V. Extracting Radiomic features from pre-operative and segmented MRI scans improved survival prognosis of glioblastoma Multiforme patients through machine learning: a retrospective study. Multimed Tools Appl 82, 30003–30038 (2023). https://doi.org/10.1007/s11042-022-14223-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-022-14223-x

Keywords

Navigation