Skip to main content
Log in

Robust gait identification using Kinect dynamic skeleton data

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Gait has been recently proposed as a biometric feature that, with respect to other human characteristics, can be captured at a distance without requiring the collaboration of the observed subject. Therefore, it turns out to be a promising approach for people identification in several scenarios, e.g. access control and forensic applications. In this paper, we propose an automatic gait recognition system based on a set of features acquired using the 3D skeletal tracking provided by the popular Kinect sensor. Gait features are defined in terms of distances between selected sets of joints and their vertical and lateral sway with respect to walking direction. Moreover we do not rely on any geometrical assumptions on the position of the sensor. The effectiveness of the defined gait features is shown in the case of person identification based on supervised classification, using the principal component analysis and the support vector machine. A rich set of experiments is provided in two scenarios: a controlled identification setup and a classical video-surveillance setting, respectively. Moreover, we investigate if gait can be considered invariant over time for an individual, at least in a time interval of few years, by comparing gait samples of several subjects three years apart. Our experimental analysis shows that the proposed method is robust to acquisition settings and achieves very competitive identification accuracy with respect to the state of the art.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Ahmed F, Paul PP, Gavrilova ML (2015) DTW-based kernel and rank-level fusion for 3D gait recognition using Kinect. Vis Comput 31(6–8):915–924

    Article  Google Scholar 

  2. Allard P (1997) Three-dimensional analysis of human locomotion International Society Biomechanics series. Wiley, New York

    Google Scholar 

  3. Andersson V, Araujo R (2015). In: Proceedings of the twenty-ninth association for the advancement of artificial intelligence conference, AAAI

  4. Ashbourn J (2002) Biometrics - advanced identity verification: the complete guide. Springer, Berlin

    Google Scholar 

  5. Bolle R, Pankanti S (1998) Biometrics, Personal Identification in Networked Society: Personal Identification in Networked Society. Kluwer Academic Publishers, Norwell

    Google Scholar 

  6. Bouchrika I, Nixon M (2007) In: Computer vision/computer graphics collaboration techniques. Springer, pp 150–160

  7. Bouchrika I, Goffredo M, Carter J, Nixon M (2011) J Forensic Sci 56(4):882

    Article  Google Scholar 

  8. Boyd JE, Little JJ (2005) . In: Advanced Studies in Biometrics. Springer, pp 19–42

  9. Chattopadhyay P, Sural S, Mukherjee J (2014) IEEE Trans Inf Forensic Secur 9(11):1843

    Article  Google Scholar 

  10. Chattopadhyay P, Sural S, Mukherjee J (2015) Pattern Recogn Lett 63:9

    Article  Google Scholar 

  11. Connie T, Goh MKO, Teoh ABJ (2016) IEEE transactions on cybernetics

  12. Cucchiara R, Grana C, Prati A, Vezzani R (2005) In: IEE Proceedings of Vision, Image and Signal Processing

  13. Franc V, Hlavác V (2004) Czech: Center for Machine Perception, Czech Technical University, Prague

  14. Gianaria E, Balossino N, Grangetto M, Lucenteforte M (2013) In: 2013 IEEE 15th international workshop on multimedia signal processing (MMSP), pp 440–445. https://doi.org/10.1109/MMSP.2013.6659329

  15. Gianaria E, Grangetto M, Lucenteforte M, Balossino N (2014) In: Biometric authentication. Springer, pp 16–27

  16. Gianaria E, Grangetto M, Balossino N (2017) In: International conference on image analysis and processing. Springer, pp 648–658

  17. Goffredo M, Bouchrika I, Carter J, Nixon M (2010) Multimed Tools Appl 50(1):75. https://doi.org/10.1007/s11042-009-0378-5

    Article  Google Scholar 

  18. Han J, Bhanu B (2006) IEEE Trans Pattern Anal Mach Intell 28(2):316

    Article  Google Scholar 

  19. Hegeman J, Shapkova EY, Honegger F, Allum JH (2007) J Vestib Res 17(2):75

    Google Scholar 

  20. Jain AK, Ross A, Prabhakar S (2004) IEEE Trans Circ Syst Video Technol 14(1):4

    Article  Google Scholar 

  21. Janssen LJ, Verhoeff LL, Horlings CG, Allum JH (2009) Gait Posture 29(4):575

    Article  Google Scholar 

  22. Jung SU, Nixon M (2012) IEEE Trans Inf Forensic Secur 7(6):1802

    Article  Google Scholar 

  23. Khoshelham K, Elberink SO (2012) Sensors 12(2):1437. https://doi.org/10.3390/s120201437

    Article  Google Scholar 

  24. Khoshelham K, Elberink SO (2012) Sensors 12(2):1437

    Article  Google Scholar 

  25. KinectUNITO gait dataset. http://www.di.unito.it/gianaria/~project_gait.html

  26. Kusakunniran W (2014) IEEE Trans Inf Forensic Secur 9(9):1416

    Article  Google Scholar 

  27. Larsen PK, Simonsen EB, Lynnerup N (2007) In: Proceedings of videometrics IX, vol 6491

  28. Liao S, Jain AK, Li SZ (2013) IEEE Trans Pattern Anal Mach Intell 35(5):1193

    Article  Google Scholar 

  29. Liu LF, Jia W, Zhu YH (2009) In: Huang DS, Jo KH, Lee HH, Kang HJ, Bevilacqua V (eds) Emerging intelligent computing technology and applications. With Aspects of Artificial Intelligence, Lecture Notes in Computer Science, vol 5755. Springer Berlin Heidelberg, pp 652–659. https://doi.org/10.1007/978-3-642-04020-7_70

  30. Livingston MA, Sebastian J, Ai Z, Decker JW (2012) 2012 IEEE Virtual Reality (VR) 298(0704):119. https://doi.org/10.1109/VR.2012.6180911

    Article  Google Scholar 

  31. Muramatsu D, Makihara Y, Yagi Y (2016) IEEE Trans Cybern 46(7):1602

    Article  Google Scholar 

  32. Pala F, Satta R, Fumera G, Roli F (2015) IEEE Trans Circ Syst Video Technol 8215(MARCH):1. https://doi.org/10.1109/TCSVT.2015.2424056

    Google Scholar 

  33. Preis J, Kessel M, Werner M, Linnhoff-Popien C (2012). In: Proceedings of the first workshop on Kinect in pervasive computing

  34. Sarkar S, Phillips PJ, Liu Z, Vega IR, Grother P, Bowyer KW (2005) IEEE Trans Pattern Anal Mach Intell 27(2):162. https://doi.org/10.1109/TPAMI.2005.39

    Article  Google Scholar 

  35. Satta R, Pala F, Fumera G, Roli F (2013) In: 8th international conference on computer vision theory and applications (VISAPP 2013), Barcelona

  36. Schölkopf B, Burges CJ (1999) Advances in kernel methods: support vector learning. MIT Press, Cambridge

    MATH  Google Scholar 

  37. Tafazzoli F, Safabakhsh R (2010) Eng Appl Artif Intell 23(8):1237

    Article  Google Scholar 

  38. Urtasun R, Fua P (2004) In: 2004 Proceedings sixth IEEE international conference on automatic face and gesture recognition. IEEE, pp 17–22

  39. Wang L, Tan T, Ning H, Hu W (2003) IEEE Trans Pattern Anal Mach Intell 25(12):1505

    Article  Google Scholar 

  40. Wang J, She M, Nahavandi S, Kouzani A (2010) In: 2010 international conference on digital image computing: techniques and applications (DICTA). IEEE, pp 320–327

  41. Yang K, Dou Y, Lv S, Zhang F, Lv Q (2016) Journal of Visual Communication and Image Representation

  42. Zhang Z (2012) MultiMed IEEE 19(2):4

    Article  Google Scholar 

  43. Zhang Y, Pan G, Jia K, Lu M, Wang Y, Wu Z (2015) IEEE Trans Cybern 45(9):1864

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elena Gianaria.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gianaria, E., Grangetto, M. Robust gait identification using Kinect dynamic skeleton data. Multimed Tools Appl 78, 13925–13948 (2019). https://doi.org/10.1007/s11042-018-6865-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-018-6865-9

Keywords

Navigation