Skip to main content
Log in

Targeting c-Myc with decoy oligodeoxynucleotide-loaded polycationic nanoparticles inhibits cell growth and induces apoptosis in cancer stem-like cells (NTERA-2)

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Background

An increase in cancer stem cell (CSC) populations and their resistance to common treatments could be a result of c-Myc dysregulations in certain cancer cells. In the current study, we investigated anticancer effects of c-Myc decoy ODNs loaded-poly (methacrylic acid-co-diallyl dimethyl ammonium chloride) (PMA-DDA)-coated silica nanoparticles as carriers on cancer-like stem cells (NTERA-2).

Methods and results

The physicochemical characteristics of the synthesized nanocomposites (SiO2@PMA-DDA-DEC) were analyzed using FT-IR, DLS, and SEM techniques. UV–Vis spectrophotometer was applied to analyze the release pattern of decoy ODNs from the nanocomposite. Furthermore, uptake, cell viability, apoptosis, and cell cycle assays were used to investigate the anticancer effects of nanocomposites loaded with c-Myc decoy ODNs on NTERA-2 cancer cells. The results of physicochemical analytics demonstrated that SiO2@PMA-DDA-DEC nanocomposites were successfully synthesized. The prepared nanocomposites were taken up by NTERA-2 cells with high efficiency, and could effectively inhibit cell growth and increase apoptosis rate in the treated cells compared to the control group. Moreover, SiO2@PMA-DDA nanocomposites loaded with c-Myc decoy ODNs induced cell cycle arrest at the G0/G1 phase in the treated cells.

Conclusions

The conclusion drawn from this study is that c-Myc decoy ODN-loaded SiO2@PMA-DDA nanocomposites can effectively inhibit cell growth and induce apoptosis in NTERA-2 cancer cells. Moreover, given that a metal core is incorporated into this synthetic nanocomposite, it could potentially be used in conjunction with irradiation as part of a decoy-radiotherapy combinational therapy in future investigations.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The data sets used and/or analyzed during the current study are available from the corresponding author upon reasonable request.

Abbreviations

AgNPs:

Silver nanoparticles

BSA:

Bovine serum albumin

EDC:

1-(3-Dimethyl aminopropyl)-3-ethylcarbodiimide hydrochloride

FT-IR:

Fourier transform infrared

PI:

Propidium iodide

UV–Vis:

Ultraviolet–visible

FESEM:

Field emission scanning electron microscopy

DLS:

Dynamic light scattering

PDI:

Polydispersity Index

PMA-DDA:

Poly (methacrylic acid-co-diallyl dimethyl ammonium chloride)

CSC:

Cancer stem cell

TFD:

Transcription factor decoy

ODN:

Oligodeoxynucleotide

DADMAC:

Diallyl dimethyl ammonium chloride

PBS:

Phosphate-buffered saline

DMSO:

Dimethyl sulfoxide

SEM:

Scanning electron microscopy

EDTA:

Ethylenediamine tetra-acetic acid

DEC:

Decoy

SCR:

Scramble

SiO2 :

Silicon dioxide

References

  1. Ginsburg O et al (2017) The global burden of women’s cancers: a grand challenge in global health. Lancet 389(10071):847–860

    Article  PubMed  Google Scholar 

  2. Zhou B et al (2017) Early detection of pancreatic cancer: where are we now and where are we going? Int J Cancer 141(2):231–241

    Article  CAS  PubMed  Google Scholar 

  3. Peiris-Pagès M et al (2016) Cancer stem cell metabolism. Breast Cancer Res 18(1):1–10

    Article  Google Scholar 

  4. Clarke MF et al (2006) Cancer stem cells—perspectives on current status and future directions: AACR Workshop on cancer stem cells. Can Res 66(19):9339–9344

    Article  CAS  Google Scholar 

  5. Thomassen I et al (2013) Incidence, prognosis, and treatment options for patients with synchronous peritoneal carcinomatosis and liver metastases from colorectal origin. Dis Colon Rectum 56(12):1373–1380

    Article  PubMed  Google Scholar 

  6. Ali Azouaou S et al (2015) Selective ROS-dependent p53-associated anticancer effects of the hypoxoside derivative rooperol on human teratocarcinomal cancer stem-like cells. Invest New Drugs 33(1):64–74

    Article  CAS  PubMed  Google Scholar 

  7. Schmidtova S et al (2019) Disulfiram overcomes cisplatin resistance in human embryonal carcinoma cells. Cancers 11(9):1224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Knight SR et al (2021) Global variation in postoperative mortality and complications after cancer surgery: a multicentre, prospective cohort study in 82 countries. Lancet 397(10272):387–397

    Article  Google Scholar 

  9. Roy A, Li SD (2016) Modifying the tumor microenvironment using nanoparticle therapeutics. Wiley Interdiscip Rev 8(6):891–908

    Google Scholar 

  10. Han L et al (2013) Cancer stem cells: therapeutic implications and perspectives in cancer therapy. Acta Pharm Sin B 3(2):65–75

    Article  Google Scholar 

  11. Brivanlou AH, Darnell JE Jr (2002) Signal transduction and the control of gene expression. Science 295(5556):813–818

    Article  CAS  PubMed  Google Scholar 

  12. Dreesen O, Brivanlou AH (2007) Signaling pathways in cancer and embryonic stem cells. Stem Cell Rev 3(1):7–17

    Article  CAS  PubMed  Google Scholar 

  13. Palomero T et al (2006) NOTCH1 directly regulates c-Myc and activates a feed-forward-loop transcriptional network promoting leukemic cell growth. Proc Natl Acad Sci 103(48):18261–18266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Gandarillas A, Watt FM (1997) c-Myc promotes differentiation of human epidermal stem cells. Genes Dev 11(21):2869–2882

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Iritani BM, Eisenman RN (1999) c-Myc enhances protein synthesis and cell size during B lymphocyte development. Proc Natl Acad Sci 96(23):13180–13185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Johnston LA et al (1999) Drosophila Myc regulates cellular growth during development. Cell 98(6):779–790

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Schmidt EV (1999) The role of c-Myc in cellular growth control. Oncogene 18(19):2988–2996

    Article  CAS  PubMed  Google Scholar 

  18. Schuhmacher M et al (1999) Control of cell growth by c-Myc in the absence of cell division. Curr Biol 9(21):1255–1258

    Article  CAS  PubMed  Google Scholar 

  19. Packham G, Cleveland JL (1995) c-Myc and apoptosis. Biochim Biophys Acta 1242(1):11–28

    PubMed  Google Scholar 

  20. Hoffman B, Liebermann DA (1998) The proto-oncogene c-Myc and apoptosis. Oncogene 17(25):3351–3357

    Article  PubMed  Google Scholar 

  21. Dang CV (1999) c-Myc target genes involved in cell growth, apoptosis, and metabolism. Mol Cell Biol 19(1):1–11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Dang CV et al (1999) Function of the c-Myc oncogenic transcription factor. Exp Cell Res 253(1):63–77

    Article  CAS  PubMed  Google Scholar 

  23. Elend M, Eilers M (1999) Cell growth: downstream of Myc–to grow or to cycle? Curr Biol 9(24):R936–R938

    Article  CAS  PubMed  Google Scholar 

  24. Prendergast GC (1999) Mechanisms of apoptosis by c-Myc. Oncogene 18(19):2967–2987

    Article  CAS  PubMed  Google Scholar 

  25. Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100(1):57–70

    Article  CAS  PubMed  Google Scholar 

  26. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144(5):646–674

    Article  CAS  PubMed  Google Scholar 

  27. Miller DM et al (2012) c-Myc and cancer metabolism. Clin Cancer Res 18(20):5546–5553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Mann MJ, Dzau VJ (2000) Therapeutic applications of transcription factor decoy oligonucleotides. J Clin Investig 106(9):1071–1075

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Hecker M, Wagner AH (2017) Transcription factor decoy technology: a therapeutic update. Biochem Pharmacol 144:29–34

    Article  CAS  PubMed  Google Scholar 

  30. Rahmati M et al (2020) Suppressing the metastatic properties of the breast cancer cells using STAT3 decoy oligodeoxynucleotides: a promising approach for eradication of cancer cells by differentiation therapy. J Cell Physiol 235(6):5429–5444

    Article  CAS  PubMed  Google Scholar 

  31. Johari B et al (2020) Evaluation of STAT3 decoy oligodeoxynucleotides’ synergistic effects on radiation and/or chemotherapy in metastatic breast cancer cell line. Cell Biol Int 44(12):2499–2511

    Article  CAS  PubMed  Google Scholar 

  32. Bigdelou Z et al (2020) Role of Oct4–Sox2 complex decoy oligodeoxynucleotides strategy on reverse epithelial to mesenchymal transition (EMT) induction in HT29-ShE encompassing enriched cancer stem-like cells. Mol Biol Rep 47(3):1859–1869

    Article  CAS  PubMed  Google Scholar 

  33. Johari B et al (2017) Myc decoy oligodeoxynucleotide inhibits growth and modulates differentiation of mouse embryonic stem cells as a model of cancer stem cells. Anti-Cancer Agents Med Chem 17(13):1786–1795

    CAS  Google Scholar 

  34. Ashby BS (1966) pH studies in human malignant tumours. Lancet 288(7458):312–315

    Article  Google Scholar 

  35. Engin K et al (1995) Extracellular pH distribution in human tumours. Int J Hyperth 11(2):211–216

    Article  CAS  Google Scholar 

  36. Naeslund J, Swenson K-E (1953) Investigations on the pH of malignant tumours in mice and humans after the administration of glucose. Acta Obstet Gynecol Scand 32(3):359–367

    Article  CAS  PubMed  Google Scholar 

  37. Hao G, Xu ZP, Li L (2018) Manipulating extracellular tumour pH: an effective target for cancer therapy. RSC Adv 8(39):22182–22192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Li D, He Q, Li J (2009) Smart core/shell nanocomposites: intelligent polymers modified gold nanoparticles. Adv Coll Interface Sci 149(1–2):28–38

    Article  CAS  Google Scholar 

  39. Kalele S et al (2006) Nanoshell particles: synthesis, properties and applications. Curr Sci 91:1038–1052

    CAS  Google Scholar 

  40. West JL, Halas NJ (2003) Engineered nanomaterials for biophotonics applications: improving sensing, imaging, and therapeutics. Annu Rev Biomed Eng 5(1):285–292

    Article  CAS  PubMed  Google Scholar 

  41. Liu F et al (2015) Positively charged loose nanofiltration membrane grafted by diallyl dimethyl ammonium chloride (DADMAC) via UV for salt and dye removal. React Funct Polym 86:191–198

    Article  CAS  Google Scholar 

  42. Farhad-Gholami N et al (2023) Sustained doxorubicin delivery system to breast tumor cancer cell based on a novel cationic molecularly imprinted polymer. Int J Polym Mater Polym Biomater 72(4):335–344

    Article  CAS  Google Scholar 

  43. Mohammadzade H et al (2023) Molecular imprinting of miR-559 on a peptide-immobilized poly L-DOPA/silica core–shell and in vitro investigating its effects on HER2-positive breast cancer cells. Drug Deliv Transl Res 13:1–16

    Article  Google Scholar 

  44. Johari B, Zargan J (2017) Simultaneous targeted inhibition of Sox2-Oct4 transcription factors using decoy oligodeoxynucleotides to repress stemness properties in mouse embryonic stem cells. Cell Biol Int 41(12):1335–1344

    Article  CAS  PubMed  Google Scholar 

  45. Johari B et al (2023) Combinational therapy with Myc decoy oligodeoxynucleotides encapsulated in nanocarrier and X-irradiation on breast cancer cells. Oncol Res 32(2):309

    Article  PubMed  PubMed Central  Google Scholar 

  46. Ghorbani R et al (2023) Targeted anti-tumor synergistic effects of Myc decoy oligodeoxynucleotides-loaded selenium nanostructure combined with chemoradiotherapy on LNCaP prostate cancer cells. Oncol Res 32(1):101

    Article  PubMed  PubMed Central  Google Scholar 

  47. Gharbavi M et al (2020) Cholesterol-conjugated bovine serum albumin nanoparticles as a tamoxifen tumor-targeted delivery system. Cell Biol Int 44(12):2485–2498

    Article  CAS  PubMed  Google Scholar 

  48. Watermann A, Brieger J (2017) Mesoporous silica nanoparticles as drug delivery vehicles in cancer. Nanomaterials 7(7):189

    Article  PubMed  PubMed Central  Google Scholar 

  49. Li T et al (2019) Recent advancements in mesoporous silica nanoparticles towards therapeutic applications for cancer. Acta Biomater 89:1–13

    Article  CAS  PubMed  Google Scholar 

  50. Feng Y et al (2016) The application of mesoporous silica nanoparticle family in cancer theranostics. Coord Chem Rev 319:86–109

    Article  CAS  Google Scholar 

  51. Mirzababaei M et al (2022) Graphene quantum dots coated cationic polymer for targeted drug delivery and imaging of breast cancer. J Polym Res 30(7):268

    Article  Google Scholar 

  52. Farhad-Gholami N et al (2021) Sustained doxorubicin delivery system to breast tumor cancer cell based on a novel cationic molecularly imprinted polymer. Int J Polym Mater Polym Biomater 72:1–10

    Google Scholar 

  53. Ghorbani R et al (2024) Targeted anti-tumor synergistic effects of Myc decoy oligodeoxynucleotides-loaded selenium nanostructure combined with chemoradiotherapy on LNCaP prostate cancer cells. Oncol Res 32(1):101–125

    Article  Google Scholar 

  54. Bretones G, Delgado MD, León J (2015) Myc and cell cycle control. Biochim Biophys Acta 1849(5):506–516

    Article  CAS  PubMed  Google Scholar 

  55. Fan Y et al (2020) Radiosensitizing effects of c-Myc gene knockdown-induced G2/M phase arrest by intrinsic stimuli via the mitochondrial signaling pathway. Oncol Rep 44(6):2669–2677

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Sabit H et al (2021) Knockdown of c-MYC controls the proliferation of oral squamous cell carcinoma cells in vitro via dynamic regulation of key apoptotic marker genes. Int J Mol Cell Med 10(1):45

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The Medical Biotechnology Department staff of Zanjan University of Medical Sciences have been praised for their assistance by the authors.

Funding

The grant was received by Behrooz Johari from Zanjan University of Medical Sciences (Grant Number: A-12-1244-24 & Ethical Code: IR.ZUMS.BLC.1402.014).

Author information

Authors and Affiliations

Authors

Contributions

Roghayeh Ghorbani: Methodology, writing the original draft. Mahmoud Gharbavi: Methodology, review and editing. Benyamin Keshavarz: Methodology. Hamid Madanchi: Methodology, conceptualization, software, writing the original draft, and editing. Behrooz Johari: Supervision, project administration, conceptualization, writing the original draft, review, and editing, and final approval.

Corresponding authors

Correspondence to Hamid Madanchi or Behrooz Johari.

Ethics declarations

Conflict of interest

All the authors declare no financial or commercial conflict of interest that could negatively influence the study.

Ethical approval

There was no human participant and consent was not required and no human or animal was involved in this study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghorbani, R., Gharbavi, M., Keshavarz, B. et al. Targeting c-Myc with decoy oligodeoxynucleotide-loaded polycationic nanoparticles inhibits cell growth and induces apoptosis in cancer stem-like cells (NTERA-2). Mol Biol Rep 51, 623 (2024). https://doi.org/10.1007/s11033-024-09559-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11033-024-09559-6

Keywords

Navigation