Skip to main content
Log in

A snapshot on introspection of autism spectrum disorder

  • Review
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Autism spectrum disorder is a neurodevelopmental condition marked by restricted interests and difficulty with social communication. ASD is characterized by heightened neuroinflammation and irregular neuronal connections. ASD is more frequent in male than female with male–female ratio of around 4:1. ASD affects 2.8% or 1 in 36 8-year-olds, based on the CDC’s Morbidity and Mortality Weekly Report. Various factors like Environmental, Genetic, Epigenetic and Developmental factors are linked with genesis of ASD. Repetitive behaviors, Impaired communication skills, difficulty with social interaction are some of the clinical features of ASD. Current Pharmacotherapy of ASD limits to management of symptoms only, not cure. The stem cell therapy has a promising potential to be a breakthrough in treating ASD. Various types of stem cells have been successfully tested in children with ASD. AI has a potential to emerge as a tool for early detection of ASD. Robotics can assist the children with ASD to overcome the challenges associated with ASD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Graph 1
Graph 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author upon reasonable request.

References

  1. Pallanti S, Salerno L (2023) Neurodevelopmental disorders (NDDs): beyond the clinical definition and translational approach. Children 10(1):99 (Multidisciplinary Digital Publishing Institute (MDPI))

    Article  PubMed  PubMed Central  Google Scholar 

  2. Juergensen K 2018 Autism spectrum disorder: investigating predictive diagnostic relationships in children three years-of-age and younger. University of Louisville. Available from: https://ir.library.louisville.edu/etd/2998

  3. Lord C, Elsabbagh M, Baird G, Veenstra-Vanderweele J (2018) Autism spectrum disorder. The Lancet 392:508–520 (Lancet Publishing Group)

    Article  Google Scholar 

  4. Masi A, DeMayo MM, Glozier N, Guastella AJ (2017) An overview of autism spectrum disorder, heterogeneity and treatment options. Neurosci Bull 33:183–193 (Science Press)

    Article  PubMed  PubMed Central  Google Scholar 

  5. Newschaffer CJ, Croen LA, Daniels J, Giarelli E, Grether JK, Levy SE, et al. 2007 The epidemiology of autism spectrum disorders. In: Annual Review of Public Health. p. 235–58.

  6. Bolton PF, Carcani-Rathwell I, Hutton J, Goode S, Howlin P, Rutter M (2011) Epilepsy in autism: features and correlates. Br J Psychiatry 198(4):289–294

    Article  PubMed  PubMed Central  Google Scholar 

  7. Gładysz D, Krzywdzińska A, Hozyasz KK (2018) Immune abnormalities in autism spectrum disorder—could they hold promise for causative treatment? Mol Neurobiol 55:6387–6435 (Humana Press Inc)

    Article  PubMed  PubMed Central  Google Scholar 

  8. Kuddo T, Nelson KB. 2003 How common are gastrointestinal disorders in children with autism?

  9. Krakowiak P, Goodlin-Jones B, Hertz-Picciotto I, Croen LA, Hansen RL (2008) Sleep problems in children with autism spectrum disorders, developmental delays, and typical development: a population-based study. J Sleep Res 17(2):197–206

    Article  PubMed  PubMed Central  Google Scholar 

  10. Ashmawi NS, Hammoda MA. 2022 Early prediction and evaluation of risk of autism spectrum disorders. Cureus. Mar 24.

  11. Al Shirian S, Al DH (2015) Descriptive characteristics of children with autism at autism treatment center. KSA Physiol Behav 1(151):604–608

    Article  Google Scholar 

  12. Lyall K, Croen L, Daniels J, Fallin MD, Ladd-Acosta C, Lee BK et al (2017) The changing epidemiology of autism spectrum disorders. Annu Rev Public Health 20(38):81–102

    Article  Google Scholar 

  13. Colvert E, Tick B, McEwen F, Stewart C, Curran SR, Woodhouse E et al (2015) Heritability of autism spectrum disorder in a UK population-based twin sample. JAMA Psychiat 72(5):415–423

    Article  Google Scholar 

  14. Grønborg TK, Schendel DE, Parner ET (2013) Recurrence of autism spectrum disorders in full- and half-siblings and trends over time: a population-based cohort study. JAMA Pediatr 167(10):947–953

    Article  PubMed  PubMed Central  Google Scholar 

  15. 2023 Autism and developmental disabilities monitoring (ADDM) Network. Available from: www.cdc.gov/autism

  16. Purkayastha P, Malapati A, Yogeeswari P, Sriram D (2015) Send orders for reprints to reprints@benthamscience.ae a review on GABA/glutamate pathway for therapeutic intervention of ASD and ADHD. Curr Med Chem 22(15):1850–1859

    Article  CAS  PubMed  Google Scholar 

  17. Yoon SH, Choi J, Lee WJ, Do JT (2020) Genetic and epigenetic etiology underlying autism spectrum disorder. J of Clin Med 9(4):966 (MDPI)

    Article  CAS  Google Scholar 

  18. Kosmicki JA, Samocha KE, Howrigan DP, Sanders SJ, Slowikowski K, Lek M et al (2017) Refining the role of de novo protein-truncating variants in neurodevelopmental disorders by using population reference samples. Nat Genet 49(4):504–510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Khogeer AA, Abomansour IS, Mohammed DA (2022) The role of genetics epigenetics and the environment in ASD: a mini review. Epigenomes 6(2):15 (MDPI)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Elhawary NA, Tayeb MT, Sindi IA, Qutub N, Rashad M, Mufti A et al (2019) Genetic biomarkers predict susceptibility to autism spectrum disorder through interactive models of inheritance in a Saudi community. Cogent Biol 5(1):1606555

    Article  Google Scholar 

  21. Lu Z, Liu Z, Mao W, Wang X, Zheng X, Chen S et al (2020) Locus-specific DNA methylation of Mecp2 promoter leads to autism-like phenotypes in mice. Cell Death Dis 11(2):85

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Nakata M, Kimura R, Funabiki Y, Awaya T, Murai T, Hagiwara M (2019) MicroRNA profiling in adults with high-functioning autism spectrum disorder. Mol Brain 12(1):82

    Article  PubMed  PubMed Central  Google Scholar 

  23. Ozkul Y, Taheri S, Bayram KK, Sener EF, Mehmetbeyoglu E, Öztop DB et al (2020) A heritable profile of six miRNAs in autistic patients and mouse models. Sci Rep 10(1):9011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Vatsa N, Kumar V, Singh BK, Kumar SS, Sharma A, Jana NR (2019) Down-regulation of miRNA-708 promotes aberrant calcium signaling by targeting neuronatin in a mouse model of angelman syndrome. Front Mol Neurosci 12:12

    Article  Google Scholar 

  25. Zhang F, Rein B, Zhong P, Shwani T, Conrow-Graham M, Wang ZJ et al (2021) Synergistic inhibition of histone modifiers produces therapeutic effects in adult shank3-deficient mice. Transl Psychiatry 11(1):99

    Article  PubMed  PubMed Central  Google Scholar 

  26. Bölte S, Girdler S, Marschik PB (2019) The contribution of environmental exposure to the etiology of autism spectrum disorder. Cell Mol Life Sci 76(7):1275–1297 (Birkhauser Verlag AG)

    Article  PubMed  Google Scholar 

  27. Sanchez CE, Barry C, Sabhlok A, Russell K, Majors A, Kollins SH et al (2018) Maternal pre-pregnancy obesity and child neurodevelopmental outcomes: a meta-analysis. Obes Rev 19(4):464–484 (Blackwell Publishing Ltd)

    Article  CAS  PubMed  Google Scholar 

  28. Grandjean P, Landrigan PJ (2014) Neurobehavioural effects of developmental toxicity. Lancet Neurol 13(3):330–338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Nudel R, Thompson WK, Børglum AD, Hougaard DM, Mortensen PB, Werge T et al (2022) Maternal pregnancy-related infections and autism spectrum disorder—the genetic perspective. Transl Psychiatry 12(1):334

    Article  PubMed  PubMed Central  Google Scholar 

  30. Reiner A, Levitz J (2018) Glutamatergic signaling in the central nervous system: ionotropic and metabotropic receptors in concert. Neuron 98(6):1080–1098 (Cell Press)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Takumi T, Tamada K, Hatanaka F, Nakai N, Bolton PF (2020) Behavioral neuroscience of autism. Neurosci Biobehav Rev 110:60–76 (Elsevier Ltd)

    Article  PubMed  Google Scholar 

  32. Pourhamzeh M, Moravej FG, Arabi M, Shahriari E, Mehrabi S, Ward R et al (2022) The roles of serotonin in neuropsychiatric disorders. Cell Mol Neurobiol 42(6):1671–1692 (Springer)

    Article  CAS  PubMed  Google Scholar 

  33. Nakai N, Takumi T, Nakai J, Sato M (2018) Common defects of spine dynamics and circuit function in neurodevelopmental disorders: a systematic review of findings from in vivo optical imaging of mouse models. Front Neurosci 12:412 (Frontiers Media S.A)

    Article  PubMed  PubMed Central  Google Scholar 

  34. Mandic-Maravic V, Grujicic R, Milutinovic L, Munjiza-Jovanovic A, Pejovic-Milovancevic M (2022) Dopamine in autism spectrum disorders—focus on d2/d3 partial agonists and their possible use in treatment. Front Psychiatry 12:787097 (Frontiers Media S.A.)

    Article  PubMed  PubMed Central  Google Scholar 

  35. Millan MJ, Dekeyne A, Gobert A, Brocco M, la Mannoury Cour C, Ortuno JC et al (2020) Dual-acting agents for improving cognition and real-world function in alzheimer’s disease: focus on 5-HT6 and D3 receptors as hubs. Neuropharmacology 177:108099 (Elsevier Ltd)

    Article  CAS  PubMed  Google Scholar 

  36. Schür RR, Draisma LWR, Wijnen JP, Boks MP, Koevoets MGJC, Joëls M et al (2016) Brain GABA levels across psychiatric disorders: a systematic literature review and meta-analysis of 1H-MRS studies. Hum Brain Mapp 37(9):3337–3352 (John Wiley and Sons Inc.)

    Article  PubMed  PubMed Central  Google Scholar 

  37. Ingrid F, Ramos O, Gibson K, Ferreira Martins T, Paschoallete T, Bachur R, et al. Revisão sistemática correlations between stereotypies in ASD and neurotransmitters: a systematic review correlações entre estereotipias no TEA e neurotransmissores: revisão sistemática correlaciones entre estereotipias en TEA y neurotransmisores: una revisión sistemática.

  38. Montanari M, Martella G, Bonsi P, Meringolo M (2022) Autism spectrum disorder: focus on glutamatergic neurotransmission. Int J Mol Sci 23(7):3861 (MDPI)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Center for Disease Control and Prevention. 2023 Signs and symptoms of autism spectrum disorder.

  40. Koceski A, Smith CJ, Syed YA, Trajkovski V (2023) Understanding the relationship between distress behaviour and health status of people with autism spectrum disorder. Healthcare (Switzerland) 11(11):1565

    Google Scholar 

  41. Leader G, Tuohy E, Chen JL, Mannion A, Gilroy SP (2020) Feeding problems, gastrointestinal symptoms, challenging behavior and sensory issues in children and adolescents with autism spectrum disorder. J Autism Dev Disord 50(4):1401–1410

    Article  PubMed  Google Scholar 

  42. Leader G, Flynn C, O’Rourke N, Coyne R, Caher A, Mannion A (2021) Comorbid psychopathology, challenging behavior, sensory issues, adaptive behavior and quality of life in children and adolescents with autism spectrum disorder. Dev Neurorehabil 24(6):397–407

    Article  PubMed  Google Scholar 

  43. Singla R, Mishra A, Joshi R, Sarma P, Kumar R, Kaur G et al (2022) Homotaurine ameliorates the core ASD symptomatology in VPA rats through GABAergic signaling: Role of GAD67. Brain Res Bull 190:122–133

    Article  CAS  PubMed  Google Scholar 

  44. Wu H, Wang X, Gao J, Liang S, Hao Y, Sun C et al (2017) Fingolimod (FTY720) attenuates social deficits, learning and memory impairments, neuronal loss and neuroinflammation in the rat model of autism. Life Sci 15(173):43–54

    Article  Google Scholar 

  45. Kim JW, Seung H, Kim KC, Gonzales ELT, Oh HA, Yang SM et al (2017) Agmatine rescues autistic behaviors in the valproic acid-induced animal model of autism. Neuropharmacology 1(113):71–81

    Article  Google Scholar 

  46. Gao J, Wang X, Sun H, Cao Y, Liang S, Wang H et al (2016) Neuroprotective effects of docosahexaenoic acid on hippocampal cell death and learning and memory impairments in a valproic acid-induced rat autism model. Int J Dev Neurosci 1(49):67–78

    Article  Google Scholar 

  47. Saadat M, Taherian AA, Aldaghi MR, Raise-Abdullahi P, Sameni HR, Vafaei AA (2023) Prangos ferulacea (L.) ameliorates behavioral alterations, hippocampal oxidative stress markers, and apoptotic deficits in a rat model of autism induced by valproic acid. Brain Behav 13(11):e3224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Elgamal MA, Khodeer DM, Abdel-Wahab BA, Ibrahim IAA, Alzahrani AR, Moustafa YM et al (2023) Canagliflozin alleviates valproic acid-induced autism in rat pups: role of PTEN/PDK/PPAR-γ signaling pathways. Front Pharmacol 14:1113966

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Abhishek M, Rubal S, Rohit K, Rupa J, Phulen S, Gurjeet K et al (2022) Neuroprotective effect of the standardised extract of bacopa monnieri (BacoMind) in valproic acid model of autism spectrum disorder in rats. J Ethnopharmacol 293:115199

    Article  CAS  PubMed  Google Scholar 

  50. Kumar H, Sharma B (2016) Memantine ameliorates autistic behavior, biochemistry & blood brain barrier impairments in rats. Brain Res Bull 1(124):27–39

    Article  Google Scholar 

  51. Mirza R, Sharma B (2019) Benefits of fenofibrate in prenatal valproic acid-induced autism spectrum disorder related phenotype in rats. Brain Res Bull 1(147):36–46

    Article  Google Scholar 

  52. Paudel R, Raj K, Gupta YK, Singh S (2020) Oxiracetam and zinc ameliorates autism-like symptoms in propionic acid model of rats. Neurotox Res 37(4):815–826

    Article  CAS  PubMed  Google Scholar 

  53. Erten F (2021) Lycopene ameliorates propionic acid-induced autism spectrum disorders by inhibiting inflammation and oxidative stress in rats. J Food Biochem 45(10):e13922

    Article  CAS  PubMed  Google Scholar 

  54. Jiji KN, Muralidharan P (2022) Evaluation of the protective effect of clitoria ternatea L. against propionic acid induced autistic spectrum disorders in rat model. Bull Natl Res Cent 46(1):71

    Article  Google Scholar 

  55. Mirza R, Sharma B (2018) Selective modulator of peroxisome proliferator-activated receptor-α protects propionic acid induced autism-like phenotypes in rats. Life Sci 1(214):106–117

    Article  Google Scholar 

  56. Hellings J (2023) Pharmacotherapy in autism spectrum disorders, including promising older drugs warranting trials. World J Psychiatry 13(6):262–277

    Article  PubMed  PubMed Central  Google Scholar 

  57. Español E. Medication treatment for autism. Available from: http://www.autismspeaks.org/science/resources-programs/autism-treatment-

  58. Persico AM, Ricciardello A, Lamberti M, Turriziani L, Cucinotta F, Brogna C et al (2021) The pediatric psychopharmacology of autism spectrum disorder: a systematic review - part I: the past and the present. Prog Neuropsychopharmacol Biol Psychiatry 110:110326

    Article  CAS  PubMed  Google Scholar 

  59. Fenix Innovation Group. 2022 Evaluating the efficacy of NTI164 in young people with autism spectrum disorder

  60. Jazz Pharmaceuticals. 2024 Trial to investigate the safety and efficacy of cannabidiol oral solution (GWP42003-P; CBD-OS) in children and adolescents with autism spectrum disorder

  61. MapLight Therapeutics. 2024 ML-004 in Adolescents and adults with autism spectrum disorders (ASD)

  62. Fenix Innovation Group. 2022 Safety and efficacy of oral full-spectrum medicinal cannabis plant extract in children with autism spectrum disorder

  63. Yamo Pharmaceuticals LLC. 2023 A 12-week crossover study to assess the efficacy, safety and tolerability of L1–79 in subjects aged 12–21 years with autism spectrum disorder

  64. Scioto Biosciences Inc. 2022 28-day daily-dose crossover study of the safety and tolerability of SB-121 (Lactobacillus reuteri with sephadex® and maltose) in subjects, ages 15 to 45 years, diagnosed with autistic disorder

  65. Defilippis M, Wagner KD, Defilippis D. 2016 Evidence-based medicine treatment of autism spectrum disorder in children and adolescents. Psycho Pharmacology Bulletin. Vol. 18.

  66. Tian Z, Yu T, Liu J, Wang T, Higuchi A (2023) Introduction to stem cells. Prog Mol Biol Transl Sci 199:3–32. https://doi.org/10.1016/bs.pmbts.2023.02.012

    Article  PubMed  Google Scholar 

  67. Gallicchio VS (2023) The use of stem cell therapy in the treatment of autism spectrum disorder. JRMBR 23:1–12

    Google Scholar 

  68. Role of Stem Cells in Autistic Spectrum. Available from: www.ijsrm.humanjournals.com

  69. Siniscalco D, Kannan S, Semprún-Hernández N, Eshraghi AA, Brigida AL, Antonucci N (2018) Stem cell therapy in autism: recent insights, vol 11. Advances and Applications. Dove Medical Press Ltd, Stem Cells and Cloning, pp 55–67

    Google Scholar 

  70. Article R, Gaston G, Gallicchio VS (2022) Stem cell treatment of autism spectrum disorders. Stem Cells Regen Med 6(1):1–5

    Google Scholar 

  71. Shane G, Juan W (2015) Do the stem cells really work with autism spectrum disorders associated with neuro-immune interaction? Autism Open Access 5(03):1–7

    Article  Google Scholar 

  72. Pistollato F, Forbes-Hernández TY, Calderón Iglesias R, Ruiz R, Elexpuru Zabaleta M, Cianciosi D et al (2020) Pharmacological, non-pharmacological and stem cell therapies for the management of autism spectrum disorders: a focus on human studies, vol 152. Academic Press, Pharmacological Research

    Google Scholar 

  73. Sun JM, Dawson G, Franz L, Howard J, McLaughlin C, Kistler B et al (2020) Infusion of human umbilical cord tissue mesenchymal stromal cells in children with autism spectrum disorder. Stem Cells Transl Med 9(10):1137–1146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Ha S, Park H, Mahmood U, Ra JC, Suh YH, Chang KA (2017) Human adipose-derived stem cells ameliorate repetitive behavior, social deficit and anxiety in a VPA-induced autism mouse model. Behav Brain Res 15(317):479–484

    Article  Google Scholar 

  75. Sharma A, Gokulchandran N, Sane H, Nagrajan A, Paranjape A, Kulkarni P et al (2013) Autologous bone marrow mononuclear cell therapy for autism: an open label proof of concept study. Stem Cells Int 2013:623875

    Article  PubMed  PubMed Central  Google Scholar 

  76. Sharma AK, Gokulchandran N, Kulkarni PP, Sane HM, Sharma R, Jose A et al (2020) Cell transplantation as a novel therapeutic strategy for autism spectrum disorders: a clinical study. Am J Stem Cells 9(5):89

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Sharifzadeh N, Ghasemi A, Tavakol Afshari J, Moharari F, Soltanifar A, Talaei A et al (2021) Intrathecal autologous bone marrow stem cell therapy in children with autism: a randomized controlled trial. Asia Pac Psychiatry 13(2):e12445

    Article  PubMed  Google Scholar 

  78. Autism treatment with stem cells: a case report

  79. Nabetani M, Mukai T (2022) Future perspectives on cell therapy for autism spectrum disorder. Biocell 46(4):873–879

    Article  CAS  Google Scholar 

  80. Chez M, Lepage C, Parise C, Dang-Chu A, Hankins A, Carroll M (2018) Safety and observations from a placebo-controlled, crossover study to assess use of autologous umbilical cord blood stem cells to improve symptoms in children with autism. Stem Cells Transl Med 7(4):333–341

    Article  PubMed  PubMed Central  Google Scholar 

  81. Dawson G, Sun JM, Davlantis KS, Murias M, Franz L, Troy J et al (2017) Autologous cord blood infusions are safe and feasible in young children with autism spectrum disorder: results of a single-center phase I open-label trial. Stem Cells Transl Med 6(5):1332–1339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Riordan NH, Hincapié ML, Morales I, Fernández G, Allen N, Leu C et al (2019) Allogeneic human umbilical cord mesenchymal stem cells for the treatment of autism spectrum disorder in children: safety profile and effect on cytokine levels. Stem Cells Transl Med 8(10):1008–1016 (John Wiley and Sons Ltd)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Lv YT, Zhang Y, Liu M, Qiuwaxi J na ti, Ashwood P, Charles Cho S, et al. 2013 Transplantation of human cord blood mononuclear cells and umbilical cord-derived mesenchymal stem cells in autism. Available from: http://www.translational-medicine.com/content/11/1/196

  84. Bradstreet JJ, Sych N, Antonucci N, Klunnik M, Ivankova O, Matyashchuk I et al (2014) Efficacy of fetal stem cell transplantation in autism spectrum disorders: an open-labeled pilot study. Cell Transplant 23(1):105–112

    Article  Google Scholar 

  85. Nestor MW, Phillips AW, Artimovich E, Nestor JE, Hussman JP, Blatt GJ (2016) Human inducible pluripotent stem cells and autism spectrum disorder: emerging technologies. Autism Res 9(5):513–535 (John Wiley and Sons Inc)

    Article  PubMed  Google Scholar 

  86. Sundas A, Badotra S, Rani S, Gyaang R (2023) Evaluation of autism spectrum disorder based on the healthcare by using artificial intelligence strategies. J Sens 2023:5382375

    Article  Google Scholar 

  87. Beuscher LM, Fan J, Sarkar N, Dietrich MS, Newhouse PA, Miller KF et al (2017) Socially assistive robots: measuring older adults’ perceptions. J Gerontol Nurs 43(12):35–43

    Article  PubMed  PubMed Central  Google Scholar 

  88. Esau N, Kleinjohann L, Kleinjohann B. Emotional communication with the robot head MEXI.

  89. Costa A, Steffgen G, Ziafati P. 2017 Socially assistive robots for teaching emotional abilities to children with autism spectrum disorder. Available from: www.luxai.eu

  90. Hegel F, Spexard T, Wrede B, Horstmann G, Vogt T. 2006 Playing a different imitation game: interaction with an empathic android robot. In: Proceedings of the 2006 6th IEEE-RAS International Conference on Humanoid Robots, HUMANOIDS. p. 56–61.

  91. Moualla A, Boucenna S, Karaouzene A, Vidal D, Gaussier P (2018) Is it useful for a robot to visit a museum?: the impact of cumulative learning on a robot population. Paladyn 9(1):374–390

    Google Scholar 

  92. Xiao W, Li M, Chen M, Barnawi A (2020) Deep interaction: wearable robot-assisted emotion communication for enhancing perception and expression ability of children with autism spectrum disorders. Futur Gener Comput Syst 1(108):709–716

    Article  Google Scholar 

  93. Panceri JAC, Freitas É, de Souza JC, da Luz SS, Caldeira E, Bastos TF (2021) A new socially assistive robot with integrated serious games for therapies with children with autism spectrum disorder and down syndrome: a pilot study. Sensors 21(24):8414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Cominelli L, Hoegen G, De Rossi D (2021) Abel: integrating humanoid body, emotions, and time perception to investigate social interaction and human cognition. Appl Sci 11(3):1–14

    Article  Google Scholar 

  95. Shahamiri SR, Thabtah F (2020) Autism AI: a new autism screening system based on artificial intelligence. Cognit Comput 12(4):766–777

    Article  Google Scholar 

  96. Rudy LJ. 2023 Artificial Intelligence (AI) to diagnose and treat autism possibilities and limits of AI for autism.

  97. Caitlin Pugh. 2022 What is proloquo 2 Go?

  98. Amy Smith. 2016 Autism behavioral tracking tool (Birdhouse).

  99. Autism Apps for stressed parents: 5 must-discover iOS autism apps you need to know about. 2023.

  100. Visual schedule autism: enhancing daily routines.

Download references

Funding

We appreciate the support provided by Dr. D. Y. Patil Institute of Pharmaceutical Sciences and Research at Pimpri, Pune, 411018 Maharashtra, India for providing the necessary help to conduct this review.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: A.V. Methodology: G.K., Literature search: G.K., A.V., Data analysis: G.K. Writing- original draft preparation: G.K, A.V, S.J Writing-review and editing: G.K, A.V,S.J Supervision: A.V

Corresponding author

Correspondence to Veeranjaneyulu Addepalli.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval

Ethical approval was not sought for this analysis because it used secondary data available online.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kale, G., Addepalli, V. & Joshi, S. A snapshot on introspection of autism spectrum disorder. Mol Biol Rep 51, 610 (2024). https://doi.org/10.1007/s11033-024-09514-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11033-024-09514-5

Keywords

Navigation