Skip to main content
Log in

A novel SOX10 mutation causing Waardenburg syndrome type 2 by expressing a truncated and dysfunctional protein in a Chinese child

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Objectives

This study aimed to identify the causative variants in a patient with Waardenburg syndrome (WS) type 2 using whole exome sequencing (WES).

Methods

The clinical features of the patient were collected. WES was performed on the patient and his parents to screen causative genetic variants and Sanger sequencing was performed to validate the candidate mutation. The AlphaFold2 software was used to predict the changes in the 3D structure of the mutant protein. Western blotting and immunocytochemistry were used to determine the SOX10 mutant in vitro.

Results

A de novo variant of SOX10 gene, NM_006941.4: c.707_714del (p. H236Pfs*42), was identified, and it was predicted to disrupt the wild-type DIM/HMG conformation in SOX10. In-vitro analysis showed an increased level of expression of the mutant compared to the wild-type.

Conclusions

Our findings helped to understand the genotype-phenotype association in WS2 cases with SOX10 mutations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

No datasets were generated or analysed during the current study.

References

  1. Song J et al (2016) Hearing loss in Waardenburg syndrome: a systematic review. Clin Genet 89(4):416–425

    Article  CAS  PubMed  Google Scholar 

  2. Hageman MJ, Delleman JW (1977) Heterogeneity in Waardenburg syndrome. Am J Hum Genet 29(5):468–485

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Pingault V et al (2010) Review and update of mutations causing Waardenburg syndrome. Hum Mutat 31(4):391–406

    Article  CAS  PubMed  Google Scholar 

  4. Bondurand N et al (2007) Deletions at the SOX10 gene locus cause Waardenburg syndrome types 2 and 4. Am J Hum Genet 81(6):1169–1185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Baral V et al (2012) Screening of MITF and SOX10 regulatory regions in Waardenburg syndrome type 2. PLoS ONE 7(7):e41927

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Chaoui A et al (2011) Identification and functional analysis of SOX10 missense mutations in different subtypes of Waardenburg syndrome. Hum Mutat 32(12):1436–1449

    Article  CAS  PubMed  Google Scholar 

  7. Li W et al (2019) New genotypes and phenotypes in patients with 3 subtypes of Waardenburg Syndrome identified by Diagnostic Next-Generation sequencing. Neural Plast 2019:p7143458

    Article  Google Scholar 

  8. Van der Auwera GA et al (2013) From FastQ data to high confidence variant calls: the Genome Analysis Toolkit best practices pipeline. Curr Protoc Bioinf 43:11101–111033

    Article  Google Scholar 

  9. Pingault V et al (1998) SOX10 mutations in patients with Waardenburg-Hirschsprung disease. Nat Genet 18(2):171–173

    Article  CAS  PubMed  Google Scholar 

  10. Kuhlbrodt K et al (1998) Sox10, a novel transcriptional modulator in glial cells. J Neurosci 18(1):237–250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Mollaaghababa R, Pavan WJ (2003) The importance of having your SOX on: role of SOX10 in the development of neural crest-derived melanocytes and glia. Oncogene 22(20):3024–3034

    Article  CAS  PubMed  Google Scholar 

  12. Britsch S et al (2001) The transcription factor Sox10 is a key regulator of peripheral glial development. Genes Dev 15(1):66–78

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Iso M et al (2008) SOX10 mutation in Waardenburg syndrome type II. Am J Med Genet A 146A(16):2162–2163

    Article  CAS  PubMed  Google Scholar 

  14. Herbarth B et al (1998) Mutation of the sry-related Sox10 gene in Dominant megacolon, a mouse model for human Hirschsprung disease. Proc Natl Acad Sci U S A 95(9):5161–5165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Southard-Smith EM, Kos L, Pavan WJ (1998) Sox10 mutation disrupts neural crest development in Dom Hirschsprung mouse model. Nat Genet 18(1):60–64

    Article  CAS  PubMed  Google Scholar 

  16. Inoue K et al (2004) Molecular mechanism for distinct neurological phenotypes conveyed by allelic truncating mutations. Nat Genet 36(4):361–369

    Article  CAS  PubMed  Google Scholar 

  17. Zhang H et al (2012) Functional analysis of Waardenburg syndrome-associated PAX3 and SOX10 mutations: report of a dominant-negative SOX10 mutation in Waardenburg syndrome type II. Hum Genet 131(3):491–503

    Article  CAS  PubMed  Google Scholar 

  18. Guo M et al (2023) A De Novo Mutation in SOX10 in a Chinese boy with Waardenburg Syndrome Type 2. J Int Adv Otol 19(3):255–259

    Article  PubMed  PubMed Central  Google Scholar 

  19. Lin T et al (2020) Phenotypic similarities in pigs with SOX10(c.321dupC) and SOX10(c.325A > T) mutations implied the correlation of SOX10 haploinsufficiency with Waardenburg syndrome. J Genet Genomics 47(12):770–780

    Article  CAS  PubMed  Google Scholar 

  20. Pingault V et al (2022) SOX10: 20 years of phenotypic plurality and current understanding of its developmental function. J Med Genet 59(2):105–114

    Article  CAS  PubMed  Google Scholar 

  21. Li L et al (2021) Waardenburg syndrome type II in a Chinese pedigree caused by frameshift mutation in the SOX10 gene. Biosci Rep, 41(6)

  22. Chan KK et al (2003) Analysis of SOX10 mutations identified in Waardenburg-Hirschsprung patients: Differential effects on target gene regulation. J Cell Biochem 90(3):573–585

    Article  CAS  PubMed  Google Scholar 

  23. Sham MH et al (2001) Novel mutations of SOX10 suggest a dominant negative role in Waardenburg-Shah syndrome. J Med Genet 38(9):E30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Karousis ED, Muhlemann O (2019) Nonsense-mediated mRNA decay begins where translation ends. Cold Spring Harb Perspect Biol, 11(2)

  25. Eberle AB et al (2009) SMG6 promotes endonucleolytic cleavage of nonsense mRNA in human cells. Nat Struct Mol Biol 16(1):49–55

    Article  CAS  PubMed  Google Scholar 

  26. Okada-Katsuhata Y et al (2012) N- and C-terminal Upf1 phosphorylations create binding platforms for SMG-6 and SMG-5:SMG-7 during NMD. Nucleic Acids Res 40(3):1251–1266

    Article  CAS  PubMed  Google Scholar 

  27. Kuhlbrodt K et al (1998) Functional analysis of Sox10 mutations found in human Waardenburg-Hirschsprung patients. J Biol Chem 273(36):23033–23038

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (Grant Number: 81901325); Guangxi Medicine and Health Science Research Project (Grant Number: Z20170988); Guangxi Medical University Youth Science Foundation (Grant Number: GXMUYSF201804); Scientific Research and Technology Development Program of Wuzhou (Grant Number: 2021F01439).

Author information

Authors and Affiliations

Authors

Contributions

ZL and KX wrote the manuscript text; ZZ and CL prepared Figs. 1, 2 and 3; WG and JR prepared Table 1.

Corresponding author

Correspondence to Zhongxia Li.

Ethics declarations

Consent to participate

Written informed consent was obtained from the parents.

Consent for publication

The authors affirm that human research participants provided informed consent for publication of the images in Fig. 1.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Xu, K., Zhou, Z. et al. A novel SOX10 mutation causing Waardenburg syndrome type 2 by expressing a truncated and dysfunctional protein in a Chinese child. Mol Biol Rep 51, 536 (2024). https://doi.org/10.1007/s11033-024-09469-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11033-024-09469-7

Keywords

Navigation