Skip to main content

Advertisement

Log in

EGR1 transcriptionally regulates SVEP1 to promote proliferation and migration in human coronary artery smooth muscle cells

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

A low-frequency variant of sushi, von Willebrand factor type A, EGF, and pentraxin domain-containing protein 1 (SVEP1) is associated with the risk of coronary artery disease, as determined by a genome-wide association study. SVEP1 induces vascular smooth muscle cell proliferation and an inflammatory phenotype to promote atherosclerosis. In the present study, qRT‒PCR demonstrated that the mRNA expression of SVEP1 was significantly increased in atherosclerotic plaques compared to normal tissues. Bioinformatics revealed that EGR1 was a transcription factor for SVEP1. The results of the luciferase reporter assay, siRNA interference or overexpression assay, mutational analysis and ChIP confirmed that EGR1 positively regulated the transcriptional activity of SVEP1 by directly binding to its promoter. EGR1 promoted human coronary artery smooth muscle cell (HCASMC) proliferation and migration via SVEP1 in response to oxidized low-density lipoprotein (ox-LDL) treatment. Moreover, the expression level of EGR1 was increased in atherosclerotic plaques and showed a strong linear correlation with the expression of SVEP1. Our findings indicated that EGR1 binding to the promoter region drive SVEP1 transcription to promote HCASMC proliferation and migration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The data in the current study are available. The WB images in Supporting Fig. 5 were uploaded.

References

  1. Roth GA et al (2020) Global burden of cardiovascular diseases and risk factors, 1990–2019: update from the GBD 2019 study. J Am Coll Cardiol 76(25):2982–3021

    Article  PubMed  PubMed Central  Google Scholar 

  2. Benjamin EJ et al (2019) Heart disease and stroke statistics-2019 update: a report from the American Heart Association. Circulation 139(10):e56–e528

    Article  PubMed  Google Scholar 

  3. Hansson GK (2005) Inflammation, atherosclerosis, and coronary artery disease. N Engl J Med 352(16):1685–1695

    Article  CAS  PubMed  Google Scholar 

  4. Libby P (2021) The changing landscape of atherosclerosis. Nature 592(7855):524–533

    Article  ADS  CAS  PubMed  Google Scholar 

  5. Arnett DK et al (2019) 2019 ACC/AHA guideline on the primary prevention of cardiovascular disease: a report of the American College of Cardiology/American Heart Association Task Force on clinical practice guidelines. Circulation 140(11):e596–e646

    PubMed  PubMed Central  Google Scholar 

  6. Pan H et al (2020) Single-cell genomics reveals a novel cell state during smooth muscle cell phenotypic switching and potential therapeutic targets for atherosclerosis in mouse and human. Circulation 142(21):2060–2075

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Miano JM et al (2021) Fate and state of vascular smooth muscle cells in atherosclerosis. Circulation 143(21):2110–2116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Cao G et al (2022) How vascular smooth muscle cell phenotype switching contributes to vascular disease. Cell Commun Signal 20(1):180

    Article  MathSciNet  PubMed  PubMed Central  Google Scholar 

  9. Sato-Nishiuchi R et al (2012) Polydom/SVEP1 is a ligand for integrin α9β1. J Biol Chem 287(30):25615–25630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Myocardial infarction genetics and CARDIoGRAM exome consortia investigators, Stitziel NO et al (2016) Coding variation in ANGPTL4, LPL, and SVEP1 and the risk of coronary disease. N Engl J Med 374(12):1134–1144

    Article  PubMed Central  Google Scholar 

  11. Jung IH et al (2021) SVEP1 is a human coronary artery disease locus that promotes atherosclerosis. Sci Transl Med. 13(586):eabe0357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Winkler MJ et al (2020) Functional investigation of the coronary artery disease gene SVEP1. Basic Res Cardiol 115(6):67

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Zhang H et al (2021) Augmenting ATG14 alleviates atherosclerosis and inhibits inflammation via promotion of autophagosome-lysosome fusion in macrophages. Autophagy 17(12):4218–4230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ayari H et al (2013) Identification of two genes potentially associated in iron-heme homeostasis in human carotid plaque using microarray analysis. J Biosci 38(2):311–315

    Article  CAS  PubMed  Google Scholar 

  15. Grootaert MOJ et al (2021) Vascular smooth muscle cells in atherosclerosis: time for a reassessment. Cardiovasc Res 117(11):2326–2339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Tang HY et al (2022) Vascular smooth muscle cells phenotypic switching in cardiovascular diseases. Cells 11(24):4060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wirka RC et al (2019) Atheroprotective roles of smooth muscle cell phenotypic modulation and the TCF21 disease gene as revealed by single-cell analysis. Nat Med 25(8):1280–1289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kansakar U et al (2021) Targeting the phenotypic switch of vascular smooth muscle cells to tackle atherosclerosis. Atherosclerosis 324:117–120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Aherrahrou R et al (2020) Genetic regulation of atherosclerosis-relevant phenotypes in human vascular smooth muscle cells. Circ Res 127(12):1552–1565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Tcheandjieu C et al (2022) Large-scale genome-wide association study of coronary artery disease in genetically diverse populations. Nat Med 28(8):1679–1692

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Solomon CU et al (2022) Effects of coronary artery disease-associated variants on vascular smooth muscle cells. Circulation 146(12):917–929

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Finney AC et al (2017) Integrin signaling in atherosclerosis. Cell Mol Life Sci 74(12):2263–2282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Chen PY et al (2016) Smooth muscle FGF/TGFβ cross talk regulates atherosclerosis progression. EMBO Mol Med 8(7):712–728

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  24. Martos-Rodriguez CJ et al (2021) Fibrous caps in atherosclerosis form by notch-dependent mechanisms common to arterial media development. Arterioscler Thromb Vasc Biol 41(9):e427–e439

    Article  CAS  PubMed  Google Scholar 

  25. Peng X et al (2023) Role of the notch1 signaling pathway in ischemic heart disease (review). Int J Mol Med 51(3):27

    Article  CAS  PubMed  Google Scholar 

  26. Khachigian LM (2021) Early growth response-1, an integrative sensor in cardiovascular and inflammatory disease. J Am Heart Assoc 10(22):e023539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Xie Y et al (2023) Early growth response-1: key mediators of cell death and novel targets for cardiovascular disease therapy. Front Cardiovasc Med 10:1162662

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wang B et al (2010) Phosphorylation and acetylation of histone H3 and autoregulation by early growth response 1 mediate interleukin 1beta induction of early growth response 1 transcription. Arterioscler Thromb Vasc Biol 30(3):536–545

    Article  CAS  PubMed  Google Scholar 

  29. Fasolo F et al (2021) Long noncoding RNA MIAT controls advanced atherosclerotic lesion formation and plaque destabilization. Circulation 144(19):1567–1583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Yan SF et al (2006) Protein kinase C beta/early growth response-1 pathway: a key player in ischemia, atherosclerosis, and restenosis. J Am Coll Cardiol 48(9):A47–55

    Article  CAS  PubMed  Google Scholar 

  31. Andrassy M et al (2005) Centrol role of PKC beta in neointimal expansion triggered by acute arterial injury. Circ Res 96(4):476–483

    Article  CAS  PubMed  Google Scholar 

  32. Khachigian LM et al (1996) Egr-1-induced endothelial gene expression: a common theme in vascular injury. Science 271(5254):1427–1431

    Article  ADS  CAS  PubMed  Google Scholar 

  33. Li Y et al (2016) MicroRNA miR-191 targets the zinc finger transcription factor Egr-1 and suppresses intimal thickening after carotid injury. Int J Cardiol 212:299–302

    Article  PubMed  Google Scholar 

  34. Zhang J et al (2013) An Egr-1-specific DNAzyme regulates Egr-1 and proliferating cell nuclear antigen expression in rat vascular smooth muscle cells. Exp Ther Med 5(5):1371–1374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Han W et al (2010) EGR-1 decoy ODNs inhibit vascular smooth muscle cell proliferation and neointimal hperplasia of balloon-injured arteries in rat. Life Sci 86(7–8):234–243

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by grants from the National Natural Science Foundation of China (81970579 to GZP, 82101816 to QC, 82270068 to RJ) and the Natural Science Foundation of Jiangsu Province (BK20210965 to QC).

Author information

Authors and Affiliations

Authors

Contributions

Qiang Tian, Jia-He Chen, and Yi Ding wrote the main manuscript. Xin-Yu Wang, Jia-Yun Qiu and Li–Li Zhuang assisted in the methodology. Qian Cao, Rui Jin and Guo-Ping Zhou received funding for the study and led the study. All authors reviewed the manuscript.

Corresponding author

Correspondence to Guo-Ping Zhou.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethical approval

The study was approved by the Clinical Research Ethics Committee of the First Affiliated Hospital of Nanjing Medical University (2016-SR-144). Informed consent was obtained from patients before participation.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, Q., Chen, JH., Ding, Y. et al. EGR1 transcriptionally regulates SVEP1 to promote proliferation and migration in human coronary artery smooth muscle cells. Mol Biol Rep 51, 365 (2024). https://doi.org/10.1007/s11033-024-09322-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11033-024-09322-x

Keywords

Navigation