Skip to main content

Advertisement

Log in

Naringenin in combination with quercetin/fisetin shows synergistic anti-proliferative and migration reduction effects in breast cancer cell lines

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Introduction & aim

Breast cancer is one of the most common cancers with a high mortality rate among women worldwide. Quercetin/fisetin and naringenin, three well-known flavonoids, have been used to fight against various cancers. The aim of the present study was to investigate the possible synergism of quercetin/fisetin with naringenin on MCF7 and MDA-MB-231 breast cancer cell lines.

Methods

In this study, cultured MCF7 and MDA-MB-231 cells were treated with different concentrations of quercetin/fisetin individually and in combination with naringenin. MTT assay and scratch assay was employed to determine cell viability and migration respectively. Real-time PCR was used to study the expression level of apoptosis genes and miR-1275 (tumor suppressor miRNA) and mir-27a-3p (oncogenic miRNA).

Results

A synergism effect of quercetin/fisetin and naringenin (CI < 1) was observed for both cell lines. Combination therapies were significantly more effective in cell growth reduction, migration suppression and apoptosis induction than single therapies. Gene expression analysis revealed the upregulation of miR-1275 and downregulation miR-27a-3p.

Conclusion

Our results indicate that quercetin/fisetin enhances the anti-proliferative and anti-migratory activities in combination with naringenin in MCF7 and MDA-MB-231 human breast cancer cell lines. Therefore, the combination of Que/Fis and Nar can be proposed as a promising therapeutic strategy for further investigations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The data generated during and/or analyses during the current study are available from the corresponding author on reasonable request.

References

  1. Lauby-Secretan B et al (2015) Breast-cancer screening—viewpoint of the IARC Working Group. N Engl J Med 372(24):2353–2358

    Article  CAS  PubMed  Google Scholar 

  2. Normanno N et al (2009) Target-based therapies in breast cancer: current status and future perspectives. Endocrine-related Cancer 16(3):675

    Article  CAS  PubMed  Google Scholar 

  3. Kasiri N, Rahmati M, Ahmadi L, Eskandari N, Motedayyen H (2020) “Therapeutic potential of quercetin on human breast cancer in different dimensions,“ Inflammopharmacology, vol. 28, no. 1, pp. 39–62,

  4. Panche AN, Diwan AD, Chandra SR (2016) “Flavonoids: an overview,“ J nutritional Sci, vol. 5,

  5. Abotaleb M et al (2018) “Flavonoids in cancer and apoptosis,“ Cancers, vol. 11, no. 1, p. 28,

  6. Li Y et al (eds) “Quercetin, inflammation and immunity. Nutrients 8: 167,“ ed: Epub 2016/03/22. doi: https://doi.org/10.3390/nu8030167. PubMed PMID: 26999194, 2016

  7. Ezzati M, Yousefi B, Velaei K, Safa A (2020) A review on anti-cancer properties of Quercetin in breast cancer. Life Sci 248:117463

    Article  CAS  PubMed  Google Scholar 

  8. Imran M et al (2021) Fisetin: an anticancer perspective. Food Sci Nutr 9(1):3–16

    Article  CAS  PubMed  Google Scholar 

  9. Bartel DP (2004) “MicroRNAs: genomics, biogenesis, mechanism, and function,“ cell, vol. 116, no. 2, pp. 281–297,

  10. Garofalo M, Condorelli G, Croce C, Condorelli G (2010) MicroRNAs as regulators of death receptors signaling. Cell Death & Differentiation 17(2):200–208

    Article  CAS  Google Scholar 

  11. Chan B, Manley J, Lee J, Singh SR (2015) The emerging roles of microRNAs in cancer metabolism. Cancer Lett 356(2):301–308

    Article  CAS  PubMed  Google Scholar 

  12. Zhang B, Pan X, Cobb GP, Anderson TA (2007) microRNAs as oncogenes and tumor suppressors. Dev Biol 302(1):1–12

    Article  CAS  PubMed  Google Scholar 

  13. Chong ZX, Yeap SK, Ho WY, Fang CM (2022) Unveiling the tumour-regulatory roles of miR-1275 in cancer. Pathology-Research and Practice 230:153745

    Article  CAS  PubMed  Google Scholar 

  14. Zhang J, Cao Z, Yang G, You L, Zhang T, Zhao Y (2019) MicroRNA-27a (miR-27a) in solid tumors: a review based on mechanisms and clinical observations. Front Oncol 9:893

    Article  PubMed  PubMed Central  Google Scholar 

  15. Chou T-C, Talalay P (1984) Quantitative analysis of dose-effect relationships: the combined effects of multiple drugs or enzyme inhibitors. Adv Enzyme Regul 22:27–55

    Article  CAS  PubMed  Google Scholar 

  16. Karuppaiah A, Siram K, Selvaraj D, Ramasamy M, Babu D, Sankar V (2020) Synergistic and enhanced anticancer effect of a facile surface modified non-cytotoxic silver nanoparticle conjugated with gemcitabine in metastatic breast cancer cells. Mater Today Commun 23:100884

    Article  CAS  Google Scholar 

  17. Giovannetti E, Peters G (2011) Analysis of drug interactions. Methods Mol Biol 731:421–434

    Article  PubMed  Google Scholar 

  18. Seux M et al (2011) “TP53INP1 decreases pancreatic cancer cell migration by regulating SPARC expression,“ Oncogene, vol. 30, no. 27, pp. 3049–3061,

  19. Livak KJ, Schmittgen TD (2001) “Analysis of relative gene expression data using real-time quantitative PCR and the 2 – ∆∆CT method,“ methods, vol. 25, no. 4, pp. 402–408,

  20. Zagidullin B et al (2019) “DrugComb: an integrative cancer drug combination data portal,“ Nucleic Acids Res, vol. 47, no. W1, pp. W43-W51,

  21. Takeshima T et al (2010) Local Radiation Therapy inhibits Tumor Growth through the generation of Tumor-Specific CTL: its potentiation by combination with Th1 cell TherapyCombined Radioimmunotherapy against Tumors. Cancer Res 70(7):2697–2706

    Article  CAS  PubMed  Google Scholar 

  22. Yip-Schneider MT et al (2007) Suppression of pancreatic tumor growth by combination chemotherapy with sulindac and LC-1 is associated with cyclin D1 inhibition in vivo. Mol Cancer Ther 6(6):1736–1744

    Article  CAS  PubMed  Google Scholar 

  23. Kashyap D et al (2019) “Fisetin and quercetin: promising flavonoids with chemopreventive potential,“ Biomolecules, vol. 9, no. 5, p. 174,

  24. Ren MX, Deng XH, Ai F, Yuan GY, Song HY (2015) Effect of quercetin on the proliferation of the human ovarian cancer cell line SKOV-3 in vitro. Experimental and therapeutic medicine 10(2):579–583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Yoshida M et al (1990) The effect of quercetin on cell cycle progression and growth of human gastric cancer cells. FEBS Lett 260(1):10–13

    Article  CAS  PubMed  Google Scholar 

  26. Choi J-A et al (2001) Induction of cell cycle arrest and apoptosis in human breast cancer cells by quercetin. Int J Oncol 19(4):837–844

    CAS  PubMed  Google Scholar 

  27. Mutlu E, Altundağ et al (2016) “Quercetin-induced cell death in human papillary thyroid cancer (B-CPAP) cells,“ Journal of thyroid research, vol. 2016

  28. Lee T-J et al (2006) Quercetin arrests G2/M phase and induces caspase-dependent cell death in U937 cells. Cancer Lett 240(2):234–242

    Article  CAS  PubMed  Google Scholar 

  29. Zheng S-Y, Li Y, Jiang D, Zhao J, Ge J-F (2012) Anticancer effect and apoptosis induction by quercetin in the human lung cancer cell line A-549. Mol Med Rep 5(3):822–826

    CAS  PubMed  Google Scholar 

  30. Liu Y, Li C-L, Xu Q-Q, Cheng D, Liu K-D, Sun Z-Q (2021) Quercetin inhibits invasion and angiogenesis of esophageal cancer cells. Pathology-Research and Practice 222:153455

    Article  CAS  PubMed  Google Scholar 

  31. Smith ML, Murphy K, Doucette CD, Greenshields AL, Hoskin DW (2016) The dietary flavonoid fisetin causes cell cycle arrest, caspase-dependent apoptosis, and enhanced cytotoxicity of chemotherapeutic drugs in triple‐negative breast cancer cells. J Cell Biochem 117(8):1913–1925

    Article  CAS  PubMed  Google Scholar 

  32. Yang P-M, Tseng H-H, Peng C-W, Chen W-S, Chiu S-J (2012) Dietary flavonoid fisetin targets caspase-3-deficient human breast cancer MCF-7 cells by induction of caspase-7-associated apoptosis and inhibition of autophagy. Int J Oncol 40(2):469–478

    PubMed  Google Scholar 

  33. Tsai C-F et al (2018) Fisetin inhibits cell migration via inducing HO-1 and reducing MMPs expression in breast cancer cell lines. Food Chem Toxicol 120:528–535

    Article  CAS  PubMed  Google Scholar 

  34. Li J et al (2018) “Fisetin inhibited growth and metastasis of triple-negative breast cancer by reversing epithelial-to-mesenchymal transition via PTEN/Akt/GSK3β signal pathway,“ Front Pharmacol, p. 772,

  35. Sun X et al (2018) Anti–cancer effects of fisetin on mammary carcinoma cells via regulation of the PI3K/Akt/mTOR pathway: in vitro and in vivo studies. Int J Mol Med 42(2):811–820

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Pawar A, Singh S, Rajalakshmi S, Shaikh K, Bothiraja C (2018) “Development of fisetin-loaded folate functionalized pluronic micelles for breast cancer targeting,“ Artificial cells, nanomedicine, and biotechnology, vol. 46, no. sup1, pp. 347–361,

  37. Wang L, Zhang D-Z, Wang Y-X (2017) Bioflavonoid fisetin loaded α-tocopherol-poly (lactic acid)-based polymeric micelles for enhanced anticancer efficacy in breast cancers. Pharm Res 34:453–461

    Article  CAS  PubMed  Google Scholar 

  38. Khan N, Afaq F, Syed DN, Mukhtar H (2008) “Fisetin, a novel dietary flavonoid, causes apoptosis and cell cycle arrest in human prostate cancer LNCaP cells,“ Carcinogenesis, vol. 29, no. 5, pp. 1049–1056,

  39. Jia S, Xu X, Zhou S, Chen Y, Ding G, Cao L (2019) Fisetin induces autophagy in pancreatic cancer cells via endoplasmic reticulum stress-and mitochondrial stress-dependent pathways. Cell Death Dis 10(2):142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Liu X-F, Long H-J, Miao X-Y, Liu G-L, Yao H-L (2017) Fisetin inhibits liver cancer growth in a mouse model: relation to dopamine receptor. Oncol Rep 38(1):53–62

    Article  PubMed  PubMed Central  Google Scholar 

  41. Zhao Z, Jin G, Ge Y, Guo Z (2019) “Naringenin inhibits migration of breast cancer cells via inflammatory and apoptosis cell signaling pathways,“ Inflammopharmacology, vol. 27, pp. 1021–1036,

  42. Wang R, Wang J, Dong T, Shen J, Gao X, Zhou J (2019) Naringenin has a chemoprotective effect in MDA–MB–231 breast cancer cells via inhibition of caspase–3 and–9 activities. Oncol Lett 17(1):1217–1222

    CAS  PubMed  Google Scholar 

  43. Liao ACH et al (2014) Naringenin inhibits migration of bladder cancer cells through downregulation of AKT and MMP–2. Mol Med Rep 10(3):1531–1536

    Article  CAS  Google Scholar 

  44. Rhman MA, Devnarain N, Khan R, Owira PM (2022) “Synergism Potentiates Oxidative Antiproliferative Effects of Naringenin and Quercetin in MCF-7 Breast Cancer Cells,“ Nutrients, vol. 14, no. 16, p. 3437,

  45. Rahmani AH, Almatroudi A, Allemailem KS, Khan AA, Almatroodi SA (2022) “The Potential Role of Fisetin, a Flavonoid in Cancer Prevention and Treatment,“ Molecules, vol. 27, no. 24, p. 9009,

  46. Maugeri A et al (2023) Targets involved in the anti-cancer activity of quercetin in breast, colorectal and liver neoplasms. Int J Mol Sci 24(3):2952

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Zhang J-Y et al (2015) “Combinational treatment of curcumin and quercetin against gastric cancer MGC-803 cells in vitro,“ Molecules, vol. 20, no. 6, pp. 11524–11534,

  48. Kundur S et al (2019) Synergistic anticancer action of quercetin and curcumin against triple-negative breast cancer cell lines. J Cell Physiol 234(7):11103–11118

    Article  CAS  PubMed  Google Scholar 

  49. Roshanazadeh M, Rezaei HB, Rashidi M (2021) Quercetin synergistically potentiates the anti-metastatic effect of 5-fluorouracil on the MDA-MB-231 breast cancer cell line. Iran J Basic Med Sci 24(7):928

    PubMed  PubMed Central  Google Scholar 

  50. Mawalizadeh F, Mohammadzadeh G, Khedri A, Rashidi M (2021) Quercetin potentiates the chemosensitivity of MCF-7 breast cancer cells to 5-fluorouracil. Mol Biol Rep 48:7733–7742

    Article  CAS  PubMed  Google Scholar 

  51. Safi A, Heidarian E, Ahmadi R (2021) Quercetin synergistically enhances the anticancer efficacy of docetaxel through induction of apoptosis and modulation of PI3K/AKT, MAPK/ERK, and JAK/STAT3 signaling pathways in MDA-MB-231 breast cancer cell line. Int J Mol Cell Med 10(1):11

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Wang G, Song L, Wang H, Xing N (2013) Quercetin synergizes with 2-methoxyestradiol inhibiting cell growth and inducing apoptosis in human prostate cancer cells. Oncol Rep 30(1):357–363

    Article  CAS  PubMed  Google Scholar 

  53. Sun S, Gong F, Liu P, Miao Q (2018) “Metformin combined with quercetin synergistically repressed prostate cancer cells via inhibition of VEGF/PI3K/Akt signaling pathway,“ Gene, vol. 664, pp. 50–57,

  54. Shi B, Wang L-F, Meng W-S, Chen L, Meng Z-L (2017) Carnosic acid and fisetin combination therapy enhances inhibition of lung cancer through apoptosis induction. Int J Oncol 50(6):2123–2135

    Article  CAS  PubMed  Google Scholar 

  55. Mukhtar E, Adhami VM, Siddiqui IA, Verma AK, Mukhtar H (2016) Fisetin enhances Chemotherapeutic Effect of Cabazitaxel against human prostate Cancer CellsFisetin enhances efficacy of Cabazitaxel. Mol Cancer Ther 15(12):2863–2874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Jafarzadeh S, Baharara J, Tehranipour M (2021) Apoptosis induction with combined use of cisplatin and fisetin in cisplatin-resistant ovarian Cancer cells (A2780). Avicenna J Med Biotechnol 13(4):176

    PubMed  PubMed Central  Google Scholar 

  57. Yi C et al (2014) Melatonin enhances the anti-tumor effect of fisetin by inhibiting COX-2/iNOS and NF-κB/p300 signaling pathways. PLoS ONE 9(7):e99943

    Article  PubMed  PubMed Central  Google Scholar 

  58. Afzal M et al (2023) Antiproliferative mechanisms of a Polyphenolic combination of Kaempferol and Fisetin in Triple-Negative breast Cancer cells. Int J Mol Sci 24(7):6393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Duwe L et al (2023) MicroRNA-27a-3p targets FoxO signalling to induce tumour-like phenotypes in bile duct cells. J Hepatol 78(2):364–375

    Article  CAS  PubMed  Google Scholar 

  60. Zhang L-Y, Chen Y, Jia J, Zhu X, He Y, Wu L-M (2019) MiR-27a promotes EMT in ovarian cancer through active Wnt/?-catenin signalling by targeting FOXO1. Cancer Biomarkers 24(1):31–42

    Article  CAS  PubMed  Google Scholar 

  61. Li X, Mertens-Talcott SU, Zhang S, Kim K, Ball J, Safe S (2010) “MicroRNA-27a indirectly regulates estrogen receptor α expression and hormone responsiveness in MCF-7 breast cancer cells,“ Endocrinology, vol. 151, no. 6, pp. 2462–2473,

Download references

Author information

Authors and Affiliations

Authors

Contributions

M. Jalalpour Choupanan performed most of the experiments as part of his master’s degree in Genetics. Sh. Shahbazi performed miRNAs expression, and bioinformatics analysis and participated in intellectual discussions of the data. S.Reiisi coordinated the study, designed the experiments, and revised the manuscript.

Corresponding author

Correspondence to Somayeh Reiisi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jalalpour Choupanan, M., Shahbazi, S. & Reiisi, S. Naringenin in combination with quercetin/fisetin shows synergistic anti-proliferative and migration reduction effects in breast cancer cell lines. Mol Biol Rep 50, 7489–7500 (2023). https://doi.org/10.1007/s11033-023-08664-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-023-08664-2

Keywords

Navigation