Skip to main content

Advertisement

Log in

Mass Spectrometry based identification of site-specific proteomic alterations and potential pathways underlying the pathophysiology of schizophrenia

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript
  • 2 Altmetric

Abstract

Background

Schizophrenia (SZ) is a complex multifactorial disorder that affects 1% of the population worldwide with no available effective treatment. Although proteomic alterations are reported in SZ however proteomic expression aberrations among different brain regions are not fully determined. Therefore, the present study aimed spatial differential protein expression profiling of three distinct regions of SZ brain and identification of associated affected biological pathways in SZ progression.

Methods and results

Comparative protein expression profiling of three distinct autopsied human brain regions (i.e., substantia nigra, hippocampus and prefrontal cortex) of SZ was performed with respective healthy controls. Using two-dimensional electrophoresis (2DE)-based nano liquid chromatography tandem mass spectrometry (Nano-LC MS /MS) analysis, 1443 proteins were identified out of which 58 connote to be significantly dysregulated, representing 26 of substantia nigra,14 of hippocampus and 18 of prefrontal cortex. The 58 differentially expressed proteins were further analyzed using Ingenuity pathway analysis (IPA). The IPA analysis provided protein-protein interaction networks of several proteins including nuclear factor kappa-light-chain-enhancer of activated B cells (NF-kb), extracellular signal regulated kinases 1/2 (ERK1/2), alpha serine / Threonine-protein kinase (AKT1), cellular tumor antigen p53 (TP53) and amyloid precursor protein (APP), holding prime positions in networks and interacts with most of the identified proteins and their closely interacting partners.

Conclusion

These findings provide conceptual insights of novel SZ related pathways and the cross talk of co and contra regulated proteins. This spatial proteomic analysis will further broaden the conceptual framework for schizophrenia research in future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

All raw and supplementary data is available with submission.

Abbreviations

LC-MS/MS:

Liquid chromatography–mass spectrometry/ mass spectrometry

ERK1/2:

Extracellular signal regulated kinases 1/2

AKT:

Alpha serine / Threonine-protein kinase

APP:

Amyloid precursor protein

TNF:

Tumor necrosis factor

NF kb:

Nuclear factor kappa-light-chain-enhancer of activated B cells

MAPT:

Microtubule associated protein tau

PSEN1:

Presenilin 1

TP53:

Cellular tumor antigen p53

IL4:

Interleukin 4

IPA:

Ingenuity pathway analysis

References

  1. Harrison PJ (2008) Neuropathology of schizophrenia. Psychiatry 7:421–424

    Article  Google Scholar 

  2. Karlsgodt KH, Sun D, Cannon TD (2010) Structural and functional brain abnormalities in Schizophrenia. Curr Dir Psychol Sci 19:226–231

    Article  PubMed  PubMed Central  Google Scholar 

  3. Brown AS (2011) The environment and susceptibility to schizophrenia. Prog Neurobiol 93:23–58

    Article  CAS  PubMed  Google Scholar 

  4. Brown AS (2006) Prenatal infection as a risk factor for schizophrenia. Schizophr Bull 32:200–202

    Article  PubMed  PubMed Central  Google Scholar 

  5. Do KQ, Cabungcal JH, Frank A, Steullet P, Cuenod M (2009) Redox dysregulation, neurodevelopment, and schizophrenia. Curr Opin Neurobiol 19:220–230

    Article  CAS  PubMed  Google Scholar 

  6. Tandon R, Keshavan MS, Nasrallah HA (2008) Schizophrenia, “just the facts” what we know in 2008. 2. Epidemiology and etiology. Schizophr Res 102:1–18

    Article  PubMed  Google Scholar 

  7. Campeau A, Mills RH, Stevens T, Rossitto LA, Meehan M, Dorrestein P, Daly R, Nguyen TT, Gonzalez DJ, Jeste DV, Hook V (2022) Multi-omics of human plasma reveals molecular features of dysregulated inflammation and accelerated aging in schizophrenia. Mol psychiatry 27:1217–1225

    Article  CAS  PubMed  Google Scholar 

  8. Do KQ, Conus P, Cuenod M (2010) Redox dysregulation and oxidative stress in schizophrenia: nutrigenetics as a challenge in psychiatric disease prevention. World Rev Nutr Diet 101:131–153

    Article  CAS  PubMed  Google Scholar 

  9. Kundakovic M (2022) BET-ting on histone proteomics in schizophrenia. Trends Neurosci 45:716–717

    Article  CAS  PubMed  Google Scholar 

  10. Sharma K, Schmitt S, Bergner CG, Tyanova S, Kannaiyan N, Manrique-Hoyos N, Kongi K, Cantuti L, Hanisch UK, Philips M-A, Rossner MJ, Mann M, Simons M (2015) Cell type- and brain region-resolved mouse brain proteome. Nat Neurosci 18:1819–1831

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Rodrigues JE, Martinho A, Santa C, Madeira N, Coroa M, Santos V, Martins MJ, Pato CN, Macedo A, Manadas B (2022) Systematic review and Meta-analysis of Mass Spectrometry Proteomics Applied to Human Peripheral Fluids to assess potential biomarkers of Schizophrenia. Int J Mol Sci 23:4917

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Harrison PJ (2004) The hippocampus in schizophrenia: a review of the neuropathological evidence and its pathophysiological implications. Psychopharmacology 174:151–162

    Article  CAS  PubMed  Google Scholar 

  13. Harrison PJ (1999) The neuropathology of schizophrenia. Brain 122:593–624

    Article  PubMed  Google Scholar 

  14. Nishiura K, Kunii Y, Wada A, Matsumoto J, Yang Q, Ikemoto K, Niwa S-i (2011) Profiles of DARPP-32 in the insular cortex with schizophrenia: a postmortem brain study. Prog Neuropsychopharmacol Biol Psychiatry 35:1901–1907

    Article  CAS  PubMed  Google Scholar 

  15. Howes OD, Williams M, Ibrahim K, Leung G, Egerton A, McGuire PK, Turkheimer F (2013) Midbrain dopamine function in schizophrenia and depression: a post-mortem and positron emission tomographic imaging study. Brain 136:3242–3251

    Article  PubMed  PubMed Central  Google Scholar 

  16. Winton-Brown TT, Fusar-Poli P, Ungless MA, Howes OD (2014) Dopaminergic basis of salience dysregulation in psychosis. Trends Neurosci 37:85–94

    Article  CAS  PubMed  Google Scholar 

  17. Martel JC, Gatti McArthur S (2020) Dopamine receptor subtypes, physiology and pharmacology: new ligands and concepts in schizophrenia. Front Pharmacol 11:1003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Watanabe Y, Tanaka H, Tsukabe A, Kunitomi Y, Nishizawa M, Hashimoto R, Yamamori H, Fujimoto M, Fukunaga M, Tomiyama N (2014) Neuromelanin magnetic resonance imaging reveals increased dopaminergic neuron activity in the Substantia Nigra of patients with Schizophrenia. PLoS ONE 9:e104619

    Article  PubMed  PubMed Central  Google Scholar 

  19. Yoon JH, Minzenberg MJ, Raouf S, D’Esposito M, Carter CS (2013) Impaired prefrontal-basal Ganglia Functional Connectivity and Substantia Nigra hyperactivity in Schizophrenia. Biol Psychiatry 74:122–129

    Article  PubMed  PubMed Central  Google Scholar 

  20. Kim SI, Voshol H, van Oostrum J, Hastings TG, Cascio M, Glucksman MJ (2004) Neuroproteomics: expression profiling of the brain’s proteomes in health and disease. Neurochem Res 29:1317–1331

    Article  CAS  PubMed  Google Scholar 

  21. Martins-De-Souza D, Dias-Neto E, Schmitt A, Falkai P, Gormanns P, Maccarrone G, Turck CW, Gattaz WF (2010) Proteome analysis of schizophrenia brain tissue. World J Biol Psychiatry 11:110–120

    Article  PubMed  Google Scholar 

  22. English JA, Pennington K, Dunn MJ, Cotter DR (2011) The neuroproteomics of schizophrenia. Biol Psychiatry 69:163–172

    Article  CAS  PubMed  Google Scholar 

  23. Martin B, Brenneman R, Becker KG, Gucek M, Cole RN, Maudsley S (2008) iTRAQ Analysis of Complex Proteome alterations in 3xTgAD Alzheimer’s mice: understanding the interface between Physiology and Disease. PLoS ONE 3:e2750

    Article  PubMed  PubMed Central  Google Scholar 

  24. Zahid S, Oellerich M, Asif AR, Ahmed N (2012) Phosphoproteome profiling of substantia nigra and cortex regions of Alzheimer’s disease patients. J Neurochem 121:954–963

    Article  CAS  PubMed  Google Scholar 

  25. Atanassov I, Urlaub H (2013) Increased proteome coverage by combining PAGE and peptide isoelectric focusing: comparative study of gel-based separation approaches. Proteomics 13:2947–2955

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, Harris MA, Hill DP, Issel-Tarver L, Kasarskis A, Lewis S, Matese JC, Richardson JE, Ringwald M, Rubin GM, Sherlock G (2000) Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet 25:25–29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Nesvizhskii AI, Keller A, Kolker E, Aebersold R (2003) A statistical model for identifying proteins by tandem mass spectrometry. Anal Chem 75:4646–4658

    Article  CAS  PubMed  Google Scholar 

  28. Towbin H, Staehelin T, Gordon J (1979) Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A 76:4350–4354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Mi H, Muruganujan A, Casagrande JT, Thomas PD (2013) Large-scale gene function analysis with the PANTHER classification system. Nat Protoc 8:1551–1566

    Article  PubMed  PubMed Central  Google Scholar 

  30. Martins-de-Souza D, Harris LW, Guest PC, Bahn S (2011) The role of energy metabolism dysfunction and oxidative stress in schizophrenia revealed by proteomics. Antioxid Redox Signal 15:2067–2079

    Article  CAS  PubMed  Google Scholar 

  31. Prabakaran S, Swatton JE, Ryan MM, Huffaker SJ, Huang JT, Griffin JL, Wayland M, Freeman T, Dudbridge F, Lilley KS, Karp NA, Hester S, Tkachev D, Mimmack ML, Yolken RH, Webster MJ, Torrey EF, Bahn S (2004) Mitochondrial dysfunction in schizophrenia: evidence for compromised brain metabolism and oxidative stress. Mol Psychiatry 9:684–697643

    Article  CAS  PubMed  Google Scholar 

  32. Martins-de-Souza D, Maccarrone G, Wobrock T, Zerr I, Gormanns P, Reckow S, Falkai P, Schmitt A, Turck CW (2010) Proteome analysis of the thalamus and cerebrospinal fluid reveals glycolysis dysfunction and potential biomarkers candidates for schizophrenia. J Psychiatr Res 44:1176–1189

    Article  PubMed  Google Scholar 

  33. Butterfield DA, Hardas SS, Bader Lange ML (2010) Oxidatively modified glyceraldehyde-3-Phosphate dehydrogenase (GAPDH) and Alzheimer Disease: many Pathways to Neurodegeneration. J Alzheimers dis 20:369–393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Zabel C, Andreew A, Mao L, Hartl D (2008) Protein expression overlap: more important than which proteins change in expression? Expert Rev Proteomics 5:187–205

    Article  CAS  PubMed  Google Scholar 

  35. Rummel NG, Butterfield DA (2022) Altered metabolism in Alzheimer disease brain: role of oxidative stress. Antioxid Redox Signal 36:1289–1305

    Article  CAS  PubMed  Google Scholar 

  36. Okarmus J, Havelund JF, Ryding M, Schmidt SI, Bogetofte H, Heon-Roberts R, Wade-Martins R, Cowley SA, Ryan BJ, Færgeman NJ (2021) Identification of bioactive metabolites in human iPSC-derived dopaminergic neurons with PARK2 mutation: altered mitochondrial and energy metabolism. Stem Cell Reports 16:1510–1526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Elstner M, Morris CM, Heim K, Bender A, Mehta D, Jaros E, Klopstock T, Meitinger T, Turnbull DM, Prokisch H (2011) Expression analysis of dopaminergic neurons in Parkinson’s disease and aging links transcriptional dysregulation of energy metabolism to cell death. Acta Neuropathol 122:75–86

    Article  CAS  PubMed  Google Scholar 

  38. van Berdenis A, Muflihah CH, Snijders GJ, MacGillavry HD, Middeldorp J, Hol EM, Kahn RS, De Witte LD (2020) Synapse pathology in schizophrenia: a meta-analysis of postsynaptic elements in postmortem brain studies. Schizophr Bull 46:374–386

    Google Scholar 

  39. Katrancha SM, Koleske AJ (2015) SNARE Complex Dysfunction: a unifying hypothesis for Schizophrenia. Biol Psychiatry 78:356–358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Ramos-Miguel A, Beasley CL, Dwork AJ, Mann JJ, Rosoklija G, Barr AM, Honer WG (2015) Increased SNARE protein-protein interactions in Orbitofrontal and Anterior Cingulate Cortices in Schizophrenia. Biol Psychiatry 78:361–373

    Article  CAS  PubMed  Google Scholar 

  41. Zhao Z, Xu J, Chen J, Kim S, Reimers M, Bacanu SA, Yu H, Liu C, Sun J, Wang Q, Jia P, Xu F, Zhang Y, Kendler KS, Peng Z, Chen X (2015) Transcriptome sequencing and genome-wide association analyses reveal lysosomal function and actin cytoskeleton remodeling in schizophrenia and bipolar disorder. Mol Psychiatry 20:563–572

    Article  CAS  PubMed  Google Scholar 

  42. Snelleksz M, Dean B (2021) Lower levels of tubulin alpha 1b in the frontal pole in schizophrenia supports a role for changed cytoskeletal dynamics in the aetiology of the disorder. Psychiatry Res 303:114096

    Article  CAS  PubMed  Google Scholar 

  43. Martins-de-Souza D, Gattaz WF, Schmitt A, Rewerts C, Maccarrone G, Dias-Neto E, Turck CW (2009) Prefrontal cortex shotgun proteome analysis reveals altered calcium homeostasis and immune system imbalance in schizophrenia. Eur Arch Psychiatry Clin Neurosci 259:151–163

    Article  PubMed  Google Scholar 

  44. Martins-de-Souza D, Gattaz WF, Schmitt A, Maccarrone G, Hunyadi-Gulyás E, Eberlin MN, Souza GH, Marangoni S, Novello JC, Turck CW (2009) Proteomic analysis of dorsolateral prefrontal cortex indicates the involvement of cytoskeleton, oligodendrocyte, energy metabolism and new potential markers in schizophrenia. J Psychiatr Res 43:978–986

    Article  PubMed  Google Scholar 

  45. Martins-de-Souza D, Gattaz WF, Schmitt A, Novello JC, Marangoni S, Turck CW, Dias-Neto E (2009) Proteome analysis of schizophrenia patients Wernicke’s area reveals an energy metabolism dysregulation. BMC Psychiatry 9:17

    Article  PubMed  PubMed Central  Google Scholar 

  46. Xu Y, Kang J, Yuan Z, Li H, Su J, Li Y, Kong X, Zhang H, Wang W, Sun L (2013) Suppression of CLIC4/mtCLIC enhances hydrogen peroxide-induced apoptosis in C6 glioma cells. Oncol Rep 29:1483–1491

    Article  CAS  PubMed  Google Scholar 

  47. Chen X, Wales P, Quinti L, Zuo F, Moniot S, Herisson F, Rauf NA, Wang H, Silverman RB, Ayata C, Maxwell MM, Steegborn C, Schwarzschild MA, Outeiro TF, Kazantsev AG (2015) The Sirtuin-2 inhibitor AK7 is neuroprotective in models of Parkinson’s Disease but not amyotrophic lateral sclerosis and cerebral ischemia. PLoS ONE 10:e0116919

    Article  PubMed  PubMed Central  Google Scholar 

  48. Choi YH, Kim H, Lee SH, Jin YH, Lee KY (2013) ERK1/2 regulates SIRT2 deacetylase activity. Biochem Biophys Res Commun 437:245–249

    Article  CAS  PubMed  Google Scholar 

  49. Rubio MD, Wood K, Haroutunian V, Meador-Woodruff JH (2013) Dysfunction of the Ubiquitin Proteasome and Ubiquitin-Like Systems in Schizophrenia. Neuropsychopharmacology 38:1910–1920

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Medical Research Council (MRC) Sudden Death Brain and Tissue Bank, Department of Neuropathology, The University of Edinburgh, U.K. for providing brain specimens to Nikhat Ahmed. Ingenuity Pathway Analysis (IPA) for providing free trial version of the software. Higher education commission (HEC), Pakistan for providing financial support (Grant no. 20–560/ R&D/07) to Nikhat Ahmed.

Funding

The present work was supported by Grant no. 20–560/ R&D/07 to Nikhat Ahmed from Higher education commission (HEC), Pakistan,

Author information

Authors and Affiliations

Authors

Contributions

Nikhat Ahmed conceptualization, Ayesha Khan, Saadia Zahid, Beena Hasan, Abdul Rehman Asif methodology and investigation, Ayesha Khan, Saadia Zahid, Nikhat Ahmed contributed to writing/original draft preparation, Nikhat Ahmed funding. manuscript reviewed and edited by Nikhat Ahmed.

Corresponding author

Correspondence to Nikhat Ahmed.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval

This study has been performed in line with the permission of Ethical Review Board of University of Karachi, Karachi, Pakistan.

Consent to participate

Autopsied Brain samples of control and schizophrenia patients were obtained from Medical Research Council (MRC) Sudden Death Brain and Tissue Bank (SDBTB), Department of Neuropathology, The University of Edinburgh, U.K. The Edinburgh SDBTB provides an alternative model for brain donations postmortem and appropriate consent from next of kin of the deceased individual was taken after a sudden death.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Supplementary Material 2

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, A., Zahid, S., Hasan, B. et al. Mass Spectrometry based identification of site-specific proteomic alterations and potential pathways underlying the pathophysiology of schizophrenia. Mol Biol Rep 50, 4931–4943 (2023). https://doi.org/10.1007/s11033-023-08431-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-023-08431-3

Keywords

Navigation