Skip to main content

Advertisement

Log in

A review of advances in aptamer-based cell detection technology

  • Review
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Since cells are the basic structural and functional units of organisms, the detection or quantitation of cells is one of the most common basic problems in life science research. The established cell detection techniques mainly include fluorescent dye labeling, colorimetric assay, and lateral flow assay, all of which employ antibodies as cell recognition elements. However, the widespread application of the established methods generally dependent on antibodies is limited, because the preparation of antibodies is complicated and time-consuming, and unrecoverable denaturation is prone to occur with antibodies. By contrast, aptamers that are generally selected through the systematic evolution of ligands by exponential enrichment can avoid the disadvantages of antibodies due to their controllable synthesis, thermostability, and long shelf life, etc. Accordingly, aptamers may serve as novel molecular recognition elements like antibodies in combination with various techniques for cell detection. This paper reviews the developed aptamer-based cell detection methods, mainly including aptamer-fluorescent labeling, aptamer-isothermal amplification assay, electrochemical aptamer sensor, aptamer-based lateral flow analysis, and aptamer-colorimetric assay. The principles, advantages, progress of application in cell detection and future development trend of these methods were specially discussed. Overall, different assays are suitable for different detection purposes, and the development of more accurate, economical, efficient, and rapid aptamer-based cell detection methods is always on the road in the future. This review is expected to provide a reference for achieving efficient and accurate detection of cells as well as improving the usefulness of aptamers in the field of analytical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

All data are available from the authors upon reasonable request.

Abbreviations

RNA:

Ribonucleic acid

DNA:

Deoxyribonucleic acid

SELEX:

Systematic evolution of ligands by exponential enrichment

WC-SELEX:

Whole-cell SELEX

PCR:

Polymerase chain reaction

LIGS:

Ligand-guided selection

mAb:

Monoclonal antibody

mIgM:

Membrane-bound immunoglobulin

ssDNA:

Single-stranded DNA

HPLC:

High-performance liquid chromatography

PH:

Potential of hydrogen

LAMP:

Loop-mediated isothermal amplification

RCA:

Rolling circle amplification

HCR:

Hybridization chain reaction

L. monocytogenes :

Listeria monocytogenes

PLP:

Padlock probe

DNTPs:

Deoxynucleoside triphosphates

cDNA:

Complementary deoxyribonucleic acid

V. parahaemolyticus :

Vibrio Parahaemolyticus

IC:

Initiating chain

HP:

Hairpin probes

Aptasensors:

Aptamer sensors

E. coli :

Escherichia coli

CFU:

Colony forming units

LFA:

Lateral flow assay

GC:

Gas chromatography

GC-MS:

Gas chromatography-mass spectrometry

LC-MS:

Liquid chromatography-mass spectrometry

V. fischeri :

Vibrio fischeri

ATP:

Adenosine triphosphate

AuNPs:

Amphiphilic gold nanoparticles

GNPs:

Gold nanoparticles

SPR:

Surface plasmon resonanceATO

UV:

Ultraviolet

S. typhimurium :

Salmonella typhimurium

S. aureus :

Staphylococcus aureus

dsDNA:

Double-stranded DNA

SGI:

SYBR Green I

References

  1. Zheng LY, Zhang Q, Zhang YT, Qiu LP, Tan WH (2022) Aptamer-based cell recognition and detection. Curr Anal Chem 18(6):612–621

    CAS  Google Scholar 

  2. Jin BR, Yang YX, He RY et al (2018) Lateral flow aptamer assay integrated smartphone-based portable device for simultaneous detection of multiple targets using upconversion nanoparticles. Sens Actuat B-Chem 276:48–56

    Google Scholar 

  3. Zhao ZL, Wang H, Zhai WL, Feng XY, Fan X, Chen AL, Wang M (2020) A lateral flow strip based on a truncated aptamer-complementary strand for detection of type-b aflatoxins in nuts and dried figs. Toxins 12(2):136

    CAS  PubMed Central  PubMed  Google Scholar 

  4. Huang L, Tian SL, Zhao WH, Liu K, Ma X, Guo JH (2021) Aptamer-based lateral flow assay on-site biosensors. Biosens Bioelectron 186:113279

    CAS  PubMed  Google Scholar 

  5. Stoltenburg R, Reinemann C, Strehlitz B (2007) SELEX-A (r)evolutionary method to generate high-affinity nucleic acid ligands. Biomol Eng 24(4):381–403

    CAS  PubMed  Google Scholar 

  6. Sefah K, Shangguan D, Xiong XL, O’Donoghue MB, Tan WH (2010) Development of DNA aptamers using Cell-SELEX. Nat Protoc 5(6):1169–1185

    CAS  PubMed  Google Scholar 

  7. Batool S, Argyropoulos KV, Azad R, Okeoma P, Zumrut H, Bhandari S, Dekhang R, Mallikaratchy PR (2019) Dimerization of an aptamer generated from ligand-guided selection (LIGS) yields a high affinity scaffold against B-cells. Bba-Gen Subj 1863(1):232–240

    CAS  Google Scholar 

  8. Zumrut HE, Ara MN, Maio GE, Van NA, Batool S, Mallikaratchy PR (2016) Ligand-guided selection of aptamers against T-cell receptor-cluster of differentiation 3 (TCR-CD3) expressed on Jurkat.E6 cells. Anal Biochem 512:1–7

    CAS  PubMed Central  PubMed  Google Scholar 

  9. Zumrut HE, Ara MN, Fraile M, Maio G, Mallikaratchy P (2016) Ligand-guided selection of Target-Specific Aptamers: a Screening Technology for identifying specific aptamers against cell-surface proteins. Nucleic Acid Ther 26(3):190–198

    CAS  PubMed Central  PubMed  Google Scholar 

  10. Chen AL, Yang SM (2015) Replacing antibodies with aptamers in lateral flow immunoassay. Biosens Bioelectron 71:230–242

    CAS  PubMed  Google Scholar 

  11. Wang GQ, Chen ZP, Chen LX (2010) Aptamer-nanoparticle-based optical probes. Prog Chem 22(2–3):489–499

    CAS  Google Scholar 

  12. Ozer A, Pagano JM, Lis JT (2014) New Technologies provide Quantum changes in the Scale, Speed, and success of SELEX Methods and Aptamer characterization. Mol Ther-Nucl Acids 3:e183

    CAS  Google Scholar 

  13. Sharma TK, Shukla R (2014) Nucleic acid aptamers as an emerging diagnostic tool for animal pathogens. AVS 2(1):50–55

    Google Scholar 

  14. Wang K, Tao ZH, Xu L, Liu YQ (2014) Research and development of functionalized aptamer based biosensor. Chin J Anal Chem 42(2):298–304

    Google Scholar 

  15. Liu JW, Cao ZH, Lu Y (2009) Functional nucleic acid sensors. Chem Rev 109(5):1948–1998

    CAS  PubMed Central  PubMed  Google Scholar 

  16. Zhao Q, Geng X, Wang HL (2013) Fluorescent sensing ochratoxin A with single fluorophore-labeled aptamer. Anal Bioanal Chem 405(19):6281–6286

    CAS  PubMed  Google Scholar 

  17. Xu JR, Xiang JH, Chen JL, Wan T, Deng HL, Li DR (2022) High sensitivity detection of tumor cells in biological samples using a multivalent aptamer strand displacement strategy. Analyst 147(4):634–644

    CAS  PubMed  Google Scholar 

  18. Yang L, Meng L, Zhang XB, Chen Y, Zhu GZ, Liu HP, Xiong XL, Sefah K, Tan WH (2011) Engineering polymeric aptamers for selective cytotoxicity. J Am Chem Soc 133(34):13380–13386

    CAS  PubMed Central  PubMed  Google Scholar 

  19. Savla R, Taratula O, Garbuzenko O, Minko T (2011) Tumor targeted quantum dot-mucin 1 aptamer-doxorubicin conjugate for imaging and treatment of cancer. J Control Release 153(1):16–22

    CAS  PubMed  Google Scholar 

  20. Zhang J, Jia X, Lv XJ, Deng YL, Xie HY (2010) Fluorescent quantum dot-labeled aptamer bioprobes specifically targeting mouse liver cancer cells. Talanta 81(1–2):505–509

    CAS  PubMed  Google Scholar 

  21. Hu ZX, Tan JT, Lai ZQ et al (2017) Aptamer combined with fluorescent silica nanoparticles for detection of hepatoma cells. Nanoscale Res Lett 12(1):1–8

    Google Scholar 

  22. Feng J, Shan GM, Maquieira A, Koivunen ME, Guo B, Hammock BD, Kennedy IM (2003) Functionalized europium oxide nanoparticles used as a fluorescent label in an immunoassay for atrazine. Anal Chem 75(19):5282–5286

    CAS  Google Scholar 

  23. Zhao Y, Zuo XL, Li Q et al (2021) Nucleic acids analysis. Sci China Chem 64(2):171–203

    CAS  PubMed  Google Scholar 

  24. Yang H, Xu DK (2022) Highly-sensitive and simple fluorescent aptasensor for 17 b-estradiol detection coupled with HCR-HRP structure. Talanta 240:123094

    CAS  PubMed  Google Scholar 

  25. Zhao YX, Chen F, Li Q, Wang LH, Fan CH (2015) Isothermal amplification of nucleic acids. Chem Rev 115(22):12491–12545

    CAS  PubMed  Google Scholar 

  26. Wilson DS, Szostak JW (1999) In vitro selection of functional nucleic acids. Annu Rev Biochem 68:611–647

    CAS  PubMed  Google Scholar 

  27. Tan WH, Donovan MJ, Jiang JH (2013) Aptamers from cell-based selection for Bioanalytical Applications. Chem Rev 113(4):2842–2862

    CAS  PubMed Central  PubMed  Google Scholar 

  28. Notomi T, Okayama H, Masubuchi H, Yonekawa T, Watanabe K, Amino N, Hase T (2000) Loop-mediated isothermal amplification of DNA. NAR 28(12):e63

    CAS  PubMed Central  PubMed  Google Scholar 

  29. Nagamine K, Hase T, Notomi T (2002) Accelerated reaction by loop-mediated isothermal amplification using loop primers. Mol Cell Probe 16(3):223–229

    CAS  Google Scholar 

  30. Feng JL, Dai ZY, Tian XL, Jiang XN (2018) Detection of Listeria monocytogenes based on combined aptamers magnetic capture and loop-mediated isothermal amplification. Food Control 85:443–452

    CAS  Google Scholar 

  31. Schweitzer B, Wiltshire S, Lambert J, O’Malley S, Kukanskis K, Zhu ZR, Kingsmore SF, Lizardi PM, Ward DC (2000) Immunoassays with rolling circle DNA amplification: a versatile platform for ultrasensitive antigen detection. P Natl Acad Sci USA 97(18):10113–10119

    CAS  Google Scholar 

  32. Kingsmore SF, Patel DD (2003) Multiplexed protein profiling on antibody-based microarrays by rolling circle amplification. Curr Opin Biotech 14(1):74–81

    CAS  PubMed  Google Scholar 

  33. Qi XQ, Bakht S, Devos KM, Gale MD, Osbourn A (2001) L-RCA (ligation-rolling circle amplification): a general method for genotyping of single nucleotide polymorphisms (SNPs). NAR 29(22):e116

    CAS  PubMed Central  PubMed  Google Scholar 

  34. Deng RJ, Tang LH, Tian QQ, Wang Y, Lin L, Li JH (2014) Toehold-initiated Rolling Circle amplification for visualizing individual MicroRNAs in situ in single cells. Angew Chem Int Edit 53(9):2389–2393

    CAS  Google Scholar 

  35. Asadi R, Mollasalehi H (2021) The mechanism and improvements to the isothermal amplification of nucleic acids, at a glance. Anal Biochem 631:114260

    CAS  PubMed  Google Scholar 

  36. Xu XY, Su Y, Zhang YZ, Wang XX, Tian HT, Ma X, Chu HS, Xu WT (2021) Novel rolling circle amplification biosensors for food-borne microorganism detection. TrAC-Trend Anal Chem 141:116293

    CAS  Google Scholar 

  37. Dirks RM, Pierce NA (2004) Triggered amplification by hybridization chain reaction. P Natl Acad Sci USA 101(43):15275–15278

    CAS  Google Scholar 

  38. Zhou GB, Lin MH, Song P, Chen XQ, Chao J, Wang LH, Huang Q, Huang W, Fan CH, Zuo XL (2014) Multivalent capture and detection of Cancer cells with DNA nanostructured biosensors and multibranched hybridization chain reaction amplification. Anal Chem 86(15):7843–7848

    CAS  PubMed  Google Scholar 

  39. Zhang C, Belwal T, Luo ZS, Su B, Lin XY (2021) Application of Nanomaterials in Isothermal Nucleic Acid amplification. Small 18(6):2102711

    Google Scholar 

  40. Li L, Jiang HS, Meng XX, Wen XH, Guo QP, Li ZH, Wang J, Ren YZ, Wang KM (2020) Highly sensitive detection of cancer cells via split aptamer mediated proximity-induced hybridization chain reaction. Talanta 223:121724

    PubMed  Google Scholar 

  41. Liu YX, Chen P, Yuan S, Sun B, Sun R, Meng XH (2020) A novel method for sensitive detection of Escherichia coli O157:H7 based on an aptamer and hybridization chain reaction. Anal Methods 12(29):3734–3740

    CAS  PubMed  Google Scholar 

  42. Yuan YL, Wei SQ, Liu GP, Xie SB, Chai YQ, Yuan R (2014) Ultrasensitive electrochemiluminescent aptasensor for ochratoxin A detection with the loop-mediated isothermal amplification. Anal Chim Acta 811:70–75

    CAS  PubMed  Google Scholar 

  43. Xu LL, Duan JX, Chen JM, Ding SJ, Cheng W (2020) Recent advances in rolling circle amplification-based biosensing strategies-A review. Anal Chim Acta 1148:238187

    PubMed  Google Scholar 

  44. Bi S, Yue SZ, Zhang SS (2017) Hybridization chain reaction: a versatile molecular tool for biosensing, bioimaging, and biomedicine. Chem Soc Rev 46(14):4281–4298

    CAS  PubMed  Google Scholar 

  45. Abu H, Hossain M, Marlinda A, Al Mamun M, Simarani K, Johan MR (2021) Nanomaterials based electrochemical nucleic acid biosensors for environmental monitoring: a review. Appl Surf Sci Adv 4:100064

    Google Scholar 

  46. Barthelmebs L, Hayat A, Limiadi AW, Marty JL, Noguer T (2011) Electrochemical DNA aptamer-based biosensor for OTA detection, using superparamagnetic nanoparticles. Sens Actuat B-Chem 156(2):932–937

    CAS  Google Scholar 

  47. Du Y, Dong SJ (2017) Nucleic acid biosensors: recent advances and perspectives. Ana Chem 89(1):189–215

    CAS  Google Scholar 

  48. Ziolkowski R, Jarczewska M, Gorski L, Malinowska E (2021) From small molecules toward whole cells detection: application of Electrochemical Aptasensors in Modern Medical Diagnostics. Sensors 21(3):724

    CAS  PubMed Central  PubMed  Google Scholar 

  49. Majdinasab M, Yaqub M, Rahim A, Catanante G, Hayat A, Marty JL (2017) An overview on recent progress in electrochemical biosensors for antimicrobial drug residues in animal-derived food. Sensors 17(9):1947

    PubMed Central  PubMed  Google Scholar 

  50. Liu MY, Yue FL, Kong QQ, Liu ZL, Guo YM, Sun X (2022) Aptamers against pathogenic Bacteria: selection strategies and Apta-assay/Aptasensor application for Food Safety. J Agr Food Chem 70(18):5477–5498

    CAS  Google Scholar 

  51. Ranjbar S, Shahrokhian S, Nurmohammadi F (2018) Nanoporous gold as a suitable substrate for preparation of a new sensitive electrochemical aptasensor for detection of Salmonella typhimurium. Sens Actuat B-Chem 255:1536–1544

    CAS  Google Scholar 

  52. Hasan MR, Pulingam T, Appaturi JN, Zifruddin AN, Teh SJ, Lim TW, Ibrahim F, Leo BF, Thong KL (2018) Carbon nanotube-based aptasensor for sensitive electrochemical detection of whole-cell Salmonella. Anal Biochem 554:34–43

    CAS  PubMed  Google Scholar 

  53. Burrs SL, Bhargava M, Sidhu R, Kiernan-Lewis J, Gomes C, Claussen JC, McLamore ES (2016) A paper based graphene-nanocauliflower hybrid composite for point of care biosensing. Biosens Bioelectron 85:479–487

    CAS  PubMed  Google Scholar 

  54. Reich P, Stoltenburg R, Strehlitz B, Frense D, Beckmann D (2017) Development of an impedimetric aptasensor for the detection of Staphylococcus aureus. Int J Mol Sci 18(11):2484

    PubMed Central  PubMed  Google Scholar 

  55. Tian L, Qi JX, Qian K, Oderinde O, Liu QY, Yao C, Song W, Wang YH (2018) Copper (II) oxide nanozyme based electrochemical cytosensor for high sensitive detection of circulating tumor cells in breast cancer. J Electroanal Chem 812:1–9

    CAS  Google Scholar 

  56. Yang YB, Yang XD, Yang YJ, Yuan Q (2018) Aptamer-functionalized carbon nanomaterials electrochemical sensors for detecting cancer relevant biomolecules. Carbon 129:380–395

    CAS  Google Scholar 

  57. Nuntawong P, Putalun W, Tanaka H, Morimoto S, Sakamoto S (2022) Lateral flow immunoassay for small-molecules detection in phytoproducts: a review. J Nat Med-Tokyo 76(3):521–545

    Google Scholar 

  58. Wang T, Chen LM, Chikkanna A, Chen SX, Brusius I, Sbuh N, Veedu RN (2021) Development of nucleic acid aptamer-based lateral flow assays: a robust platform for cost-effective point-of-care diagnosis. Theranostics 11(11):5174–5196

    PubMed Central  PubMed  Google Scholar 

  59. Reid R, Chatterjee B, Das SJ, Ghosh S, Sharma TK (2020) Application of aptamers as molecular recognition elements in lateral flow assays. Anal Biochem 593:113574

    CAS  PubMed  Google Scholar 

  60. Bahadır EB, Sezgintürk MK (2016) Lateral flow assays: principles, designs and labels. TrAC 82:286–306

    Google Scholar 

  61. Posthuma-Trumpie GA, Korf J, van Amerongen A (2009) Lateral flow (immuno)assay: its strengths, weaknesses, opportunities and threats. A literature survey. Anal Bioanal Chem 393(2):569–582

    CAS  PubMed  Google Scholar 

  62. Giblin PA, Lemieux RM (2006) LFA-1 as a key regulator of immune function: approaches toward the development of LFA-1-based therapeutics. Curr Pharm Design 12(22):2771–2795

    CAS  Google Scholar 

  63. Sajid M, Kawde AN, Daud M (2015) Designs, formats and applications of lateral flow assay: a literature review. J Saudi Chem Soc 19(6):689–705

    Google Scholar 

  64. Jauset-Rubio M, El-Shahawi MS, Bashammakh AS, Alyoubi AO, O’Sullivan CK (2017) Advances in aptamers-based lateral flow assays. TrAC 97:385–398

    CAS  Google Scholar 

  65. Dalirirad S, Steckl AJ (2020) Lateral flow assay using aptamer-based sensing for on-site detection of dopamine in urine. Anal Biochem 596:113637

    CAS  PubMed  Google Scholar 

  66. Shin WR, Sekhon SS, Rhee SK, Ko JH, Ahn JY, Min J, Kim YH (2018) Aptamer-based paper Strip Sensor for detecting Vibrio fischeri. Acs Comb Sci 20(5):261–268

    CAS  PubMed  Google Scholar 

  67. Liu GD, Mao X, Phillips JA, Xu H, Tan WH, Zeng LW (2009) Aptamer-nanoparticle strip biosensor for sensitive detection of cancer cells. Anal Chem 81(24):10013–10018

    CAS  PubMed Central  PubMed  Google Scholar 

  68. Nam JM, Park SJ, Mirkin CA (2002) Bio-barcodes based on oligonucleotide-modified nanoparticles. J Am Chem Soc 124(15):3820–3821

    CAS  PubMed  Google Scholar 

  69. Elghanian R, Storhoff JJ, Mucic RC, Letsinger RL, Mirkin CA (1997) Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles. Science 277(5329):1078–1081

    CAS  PubMed  Google Scholar 

  70. Pavlov V, Xiao Y, Shlyahovsky B, Willner I (2004) Aptamer-functionalized au nanoparticles for the amplified optical detection of thrombin. J Am Chem Soc 126(38):11768–11769

    CAS  PubMed  Google Scholar 

  71. Liu JW, Lu Y (2003) A colorimetric lead biosensor using DNAzyme-directed assembly of gold nanoparticles. J Am Chem Soc 125(22):6642–6643

    CAS  PubMed  Google Scholar 

  72. Zhao WA, Chiuman W, Lam J, McManus SA, Chen W, Cui YG, Pelton R, Brook MA, Li YF (2008) DNA aptamer folding on gold nanoparticles: from colloid chemistry to biosensors. J Am Chem Soc 130(11):3610–3618

    CAS  PubMed  Google Scholar 

  73. Medley CD, Smith JE, Tang Z, Wu Y, Bamrungsap S, Tan WH (2008) Gold nanoparticle-based colorimetric assay for the direct detection of cancerous cells. Anal Chem 80(4):1067–1072

    CAS  PubMed  Google Scholar 

  74. Wu SJ, Wang YQ, Duan N, Ma HL, Wang ZP (2015) Colorimetric Aptasensor based on enzyme for the detection of Vibrio parahemolyticus. J Agr Food Chem 63(35):7849–7854

    CAS  Google Scholar 

  75. Ma XY, Song LJ, Zhou NX, Xia Y, Wang ZP (2017) A novel aptasensor for the colorimetric detection of S. typhimurium based on gold nanoparticles. Int J Food Microbiol 245:1–5

    CAS  PubMed  Google Scholar 

  76. Yu TX, Xu H, Zhao Y, Han YJ, Zhang Y, Zhang JR, Xu CH, Wang WJ, Guo Q, Ge J (2020) Aptamer based high throughput colorimetric biosensor for detection of staphylococcus aureus. Sci Rep-UK 10(1):1–6

    CAS  Google Scholar 

  77. Xie MJ, Zhao FG, Zhang YP, Xiong Y, Han SY (2022) Recent advances in aptamer-based optical and electrochemical biosensors for detection of pesticides and veterinary drugs. Food Control 131:108399

    CAS  Google Scholar 

Download references

Funding

This work was supported by Shandong Provincial Natural Science Foundation, China (ZR2020MD081); the National Scientific Foundation of China (No. 31600309, 41476086); HIT Scientific Research Innovation Fund (No. 2022KYCXJJ07); and HIT Environment and Ecology Innovation Special Funds (No. HSCJ201622).

Author information

Authors and Affiliations

Authors

Contributions

Conceived and designed the paper: Fuguo Liu, Chunyun Zhang and Guofu Chen; Analysis and arrangement of documents: Yu Duan, Jinju Ma, Yuanyuan Wang and Wenrong Chen; Wrote the paper: Wenrong Chen.

Corresponding authors

Correspondence to Chunyun Zhang or Guofu Chen.

Ethics declarations

Competing Interests

We seriously declare that we have no financial and personal relationships with other people or organizations that can inappropriately influence our work. There is also no professional or other personal interest of any nature or kind in any product, service and/or company that could be construed as influencing the position presented in or the review of the manuscript entitled “A review of advances in aptamer-based cell detection technology”.

Statements & Declarations

All the authors would like to seriously state that: (a) the paper is not currently being considered for publication elsewhere; (b) all authors have been personally and actively involved in substantive work leading to the report, and will hold themselves jointly and individually responsible for its content; and (c) all relevant ethical safeguards have been met in this study.

Ethical approval

This article does not contain any studies with human participants performed by any of the authors.

Consent to Publish

All the authors consent to publish all the data included in the paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, W., Liu, F., Zhang, C. et al. A review of advances in aptamer-based cell detection technology. Mol Biol Rep 50, 5425–5438 (2023). https://doi.org/10.1007/s11033-023-08410-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-023-08410-8

Keywords

Navigation