Skip to main content

Advertisement

Log in

Inhibitory potency of the nettle lectin on neovascularization: a biomolecule for carbohydrate-mediated targeting of angiogenesis

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Background

Current angiogenesis inhibitors target cellular vascularization processes, including proliferation, migration, and tube formation. In this study, we investigated the impact of Urtica dioica agglutinin (UDA) on the cellular vascularization process. Methods and Results: Various concentrations of UDA were applied to normal (HUVEC, MCF-10 A, and HDF from humans, and L-929 from mice) and cancer (A431 and U87 from humans, and 4T1 from mice) cell lines at different times. The MTT, cell migration assay, differentiation of endothelial cells, expression of VEGF-A/VEGF-R2, and integrin α2 were evaluated. The MTT results demonstrated that UDA was non-toxic to normal cells while inhibiting the growth of neoplastic cells. The migratory capacity of HUVECs and U87 glioblastoma cells was inhibited by UDA in the wound repair model. This lectin inhibited HUVEC-induced vessel sprouting in the collagen-cytodex matrix. In addition, UDA treatment reduced VEGF-integrin cross-talk in HUVECs, confirming the anti-angiogenic activity of this molecule. Conclusions: Based on our findings, UDA may have an effect on cancer cell proliferation and vascularization events while causing minimal toxicity to normal cells via binding glyco-conjugates containing GlcNAc/man oligomers like EGFR. This is a blue clue for the angiogenesis-related therapeutic importance of UDA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

All data needed to support the conclusions are included in this article. Additional data related to this paper can be requested from the corresponding author.

References

  1. Carmeliet P (2005) Angiogenesis in life, disease and medicine. Nat 438(7070):932–936

    Article  CAS  Google Scholar 

  2. Chung AS, Ferrara N (2011) Developmental and pathological angiogenesis. Annu Rev Cell Dev Biol 27:563–584

    Article  CAS  PubMed  Google Scholar 

  3. Kotoku N, Arai M, Kobayashi M (2016) Search for anti-angiogenic substances from natural sources. Chem Pharm Bull 64(2):128–134

    Article  CAS  Google Scholar 

  4. Najafipour F, Rahimi AO, Mobaseri M et al (2014) Therapeutic effects of stinging nettle (Urtica dioica) in women with hyperandrogenism. Int J Current Res Acad Rev 2(7):153–160

    CAS  Google Scholar 

  5. Safdari Y, Ahmadzadeh V, Khalili M et al (2016) Use of single-chain antibody derivatives for targeted drug delivery. Mol Med 22(1):258–270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Salvador J-P, Vilaplana L, Marco M-P (2019) Nanobody: outstanding features for diagnostic and therapeutic applications. Anal Bioanal Chem 411(9):1703–1713

    Article  CAS  PubMed  Google Scholar 

  7. Varki A (1993) Biological roles of oligosaccharides: all of the theories are correct. Glycobiol 3(2):97–130

    Article  CAS  Google Scholar 

  8. Hirabayashi J (2003) Oligosaccharide microarrays for glycomics. Trends Biotechnol 21(4):141–143

    Article  CAS  PubMed  Google Scholar 

  9. Christiansen MN, Chik J, Lee L et al (2014) Cell surface protein glycosylation in cancer. Proteomics 14(4–5):525–546

    Article  CAS  PubMed  Google Scholar 

  10. Gomes Ferreira I, Pucci M, Venturi G et al (2018) Glycosylation as a main regulator of growth and death factor receptors signaling. Int J Mol Sci 19(2):580

    Article  PubMed Central  Google Scholar 

  11. Folkman J, Klagsbrun M (1987) Angiogenic factors. Sci 235(4787):442–447

    Article  CAS  Google Scholar 

  12. Minder P, Zajac E, Quigley JP et al (2015) EGFR regulates the development and microarchitecture of intratumoral angiogenic vasculature capable of sustaining cancer cell intravasation. Neoplasia 17(8):634–649

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Jinno H, Ueda K, Otaguro K et al (1986) Prostate growth factor in the extracts of benign prostatic hypertrophy. Eur Urol 12:41–48

    Article  CAS  PubMed  Google Scholar 

  14. McKeehan WL, Adams PS, Rosser MP (1984) Direct mitogenic effects of insulin, epidermal growth factor, glucocorticoid, cholera toxin, unknown pituitary factors and possibly prolactin, but not androgen, on normal rat prostate epithelial cells in serum-free, primary cell culture. Cancer Res 44(5):1998–2010

    CAS  PubMed  Google Scholar 

  15. Chung CH, Chang CH, Hsu CC et al (2017) Aggretin venom polypeptide as a novel anti-angiogenesis agent by targeting integrin alpha2beta1. Sci Rep 7(1):1–11

    Google Scholar 

  16. Mishra A, Behura A, Mawatwal S et al (2019) Structure-function and application of plant lectins in disease biology and immunity. Food Chem Toxicol 134:110827

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Arnaud J, Audfray A, Imberty A (2013) Binding sugars: from natural lectins to synthetic receptors and engineered neolectins. Chem Soc Rev 42(11):4798–4813

    Article  CAS  PubMed  Google Scholar 

  18. Hu D, Tateno H, Hirabayashi J (2015) Lectin engineering, a molecular evolutionary approach to expanding the lectin utilities. Mol 20(5):7637–7656

    Article  CAS  Google Scholar 

  19. Itakura Y, Nakamura-Tsuruta S, Kominami J et al (2017) Sugar-binding profiles of chitin-binding lectins from the hevein family: a comprehensive study. Int J Mol Sci 18(6):1160

    Article  PubMed  PubMed Central  Google Scholar 

  20. Peumans WJ, De Ley M, Broekaert WF (1984) An unusual lectin from stinging nettle (Urtica dioica) rhizomes. FEBS let 177(1):99–103

    Article  CAS  Google Scholar 

  21. Saul FA, Rovira P, Boulot G et al (2000) Crystal structure of Urtica dioica agglutinin, a superantigen presented by MHC molecules of class I and class II. Struc 8(6):593–603

    Article  CAS  Google Scholar 

  22. Rovira P, Buckle M, Abastado JP et al (1999) Major histocompatibility class I molecules present Urtica dioica agglutinin, a superantigen of vegetal origin, to T lymphocytes. Eur J Immunol 29(5):1571–1580

    Article  CAS  PubMed  Google Scholar 

  23. Said A, Otmani I, Derfoufi S et al (2015) Highlights on nutritional and therapeutic value of stinging nettle (Urtica dioica). Int J Pharm Pharm Sci 7(10):8–14

    Google Scholar 

  24. Seliya M, Kothiyal P (2014) Urtica dioica (stinging nettle): a review of its chemical, pharmacological, toxicological and ethnomedical properties. Int J Pharm 4(1):270–277

    Google Scholar 

  25. Wagner H, Geiger W, Boos G et al (1995) Studies on the binding of Urtica dioica agglutinin (UDA) and other lectins in an in vitro epidermal growth factor receptor test. Phytomed 1(4):287–290

    Article  CAS  Google Scholar 

  26. Shi Z, Li W-w, Tang Y et al (2017) A novel molecular model of plant lectin-induced programmed cell death in cancer. Biol Pharm Bull 40(10):1625–1629

    Article  CAS  PubMed  Google Scholar 

  27. Singh R, Nawale L, Sarkar D et al (2016) Two chitotriose-specific lectins show anti-angiogenesis, induces caspase-9-mediated apoptosis and early arrest of pancreatic tumor cell cycle. PLoS ONE 11(1):e0146110

    Article  PubMed  PubMed Central  Google Scholar 

  28. Samadian E, Hosseinzadeh Colagar A, Jahanbakhsh A (2022) The effect of UDA lectin on glycotargetting of the vasculature: an in ovo study on chicken embryo. Vet Res Forum 13(3):379–385

    PubMed  PubMed Central  Google Scholar 

  29. Yarmohamadi A, Asadi J, Gharaei R et al (2018) Valproic acid, a histone deacetylase inhibitor, enhances radiosensitivity in breast cancer cell line. J Rad Cancer Res 9(2):86

    Article  Google Scholar 

  30. Niu G, Yousefi B, Qujeq D et al (2021) Melatonin and doxorubicin co-delivered via a functionalized graphene-dendrimeric system enhances apoptosis of osteosarcoma cells. Mater Sci Eng C Mater Biol Appl 119:111554

    Article  CAS  PubMed  Google Scholar 

  31. Behelgardi MF, Zahri S, Mashayekhi F et al (2018) A peptide mimicking the binding sites of VEGF-A and VEGF-B inhibits VEGFR-1/-2 driven angiogenesis, tumor growth and metastasis. Sci Rep 8(1):1–13

    Google Scholar 

  32. Su M, Huang J, Liu S et al (2016) The anti-angiogenic effect and novel mechanisms of action of Combretastatin A-4. Sci Rep 6(1):1–11

    CAS  Google Scholar 

  33. Yarani R, Mansouri K, Mohammadi-Motlagh HR et al (2013) In vitro inhibition of angiogenesis by hydroalcoholic extract of oak (Quercus infectoria) acorn shell via suppressing VEGF, MMP-2, and MMP-9 secretion. Pharm Biol 51(3):361–368

    Article  PubMed  Google Scholar 

  34. González-González A, González A, Rueda N et al (2020) Usefulness of melatonin as complementary to chemotherapeutic agents at different stages of the angiogenic process. Sci Rep 10(1):1–20

    Google Scholar 

  35. Bakri SJ, Thorne JE, Ho AC et al (2019) Safety and efficacy of anti-vascular endothelial growth factor therapies for neovascular age-related macular degeneration: a report by the American Academy of Ophthalmology. Ophthalmol 126(1):55–63

    Article  Google Scholar 

  36. Zhou K, Zhang J-w, Wang Q-z et al (2019) Apatinib, a selective VEGFR2 inhibitor, improves the delivery of chemotherapeutic agents to tumors by normalizing tumor vessels in LoVo colon cancer xenograft mice. Acta Pharmacol Sinica 40(4):556–562

    Article  CAS  Google Scholar 

  37. Bhutia SK, Behera B, Nandini Das D et al (2016) Abrus agglutinin is a potent anti-proliferative and anti‐angiogenic agent in human breast cancer. Int J Cancer 139(2):457–466

    Article  CAS  PubMed  Google Scholar 

  38. Park W-B, Lyu S-Y, Kim J-H et al (2001) Inhibition of tumor growth and metastasis by korean mistletoe lectin is associated with apoptosis and antiangiogenesis. Cancer Biother Radiopharm 16(5):439–447

    CAS  PubMed  Google Scholar 

  39. Çagıl F, Akal Z, Alpsoy L (2015) Cytotoxic and apoptotic effects of Urtica dioica agglutinin on AGS cells. Med Chem 5:124–129

    Article  Google Scholar 

  40. Sames K, Schumacher U, Halata Z et al (2001) Lectin and proteoglycan histochemistry of Merkel cell carcinomas. Exp Dermatol 10(2):100–109

    Article  CAS  PubMed  Google Scholar 

  41. Stec WJ, Rosiak K, Siejka P et al (2016) Cell line with endogenous EGFRvIII expression is a suitable model for research and drug development purposes. Oncotarget 7(22):31907

    Article  PubMed  PubMed Central  Google Scholar 

  42. Wang Q, Liu J, Guo T et al (2019) Epidermal growth factor reverses the inhibitory effects of the bisphosphonate, zoledronic acid, on human oral keratinocytes and human vascular endothelial cells in vitro via the epidermal growth factor receptor (EGFR)/Akt/Phosphoinositide 3-kinase (PI3K) signaling pathway. Med Sci Monit 25:700

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Wagner H, Willer F, Samtleben R et al (1994) Search for the antiprostatic principle of stinging nettle (Urtica dioica) roots. Phytomed 1(3):213–224

    Article  CAS  Google Scholar 

  44. Esposito S, Bianco A, Russo R et al (2019) Therapeutic perspectives of molecules from Urtica dioica extracts for cancer treatment. Mol 24(15):2753

    Article  Google Scholar 

  45. Zhen Y, Caprioli RM, Staros JV (2003) Characterization of glycosylation sites of the epidermal growth factor receptor. Biochem 42(18):5478–5492

    Article  CAS  Google Scholar 

  46. Ogiso H, Ishitani R, Nureki O et al (2002) Crystal structure of the complex of human epidermal growth factor and receptor extracellular domains. Cell 110(6):775–787

    Article  CAS  PubMed  Google Scholar 

  47. Bessette DC, Tilch E, Seidens T et al (2015) Using the MCF10A/MCF10CA1a breast cancer progression cell line model to investigate the effect of active, mutant forms of EGFR in breast cancer development and treatment using gefitinib. PLoS ONE 10(5):e0125232

    Article  PubMed  PubMed Central  Google Scholar 

  48. Yoo B, Kavishwar A, Wang P et al (2017) Therapy targeted to the metastatic niche is effective in a model of stage IV breast cancer. Sci Rep 7(1):1–9

    Article  Google Scholar 

  49. Zihlif M, Afifi F, Abu-Dahab R et al (2013) The antiangiogenic activities of ethanolic crude extracts of four Salvia species. BMC Complement Altern Med 13(1):1–10

    Article  Google Scholar 

  50. Wang Q, Fan A, Yuan Y et al (2016) Role of moesin in advanced glycation end products-induced angiogenesis of human umbilical vein endothelial cells. Sci Rep 6(1):1–13

    Google Scholar 

Download references

Acknowledgements

We appreciate all the colleagues who collaborated with us in this study. Especial thanks from Mr. Mohammadkazem Heydari and Mr. Ali Fallah (Mol & Cell Lab., University of Mazandaran, Iran) for the best supports in all parts of our project.

Funding

This study was supported by a grant from the University of Mazandaran, dedicated to the PhD thesis of Esmaeil Samadian (#IranDoc1447431).

Author information

Authors and Affiliations

Authors

Contributions

AHC, conception and design, explanation of the data and revising the manuscript; ES, MS, JA and KM performed the experiments, data curation and analysis, and writing-original draft. All authors reviewed and approved the final manuscript.

Corresponding author

Correspondence to Abasalt Hosseinzadeh Colagar.

Ethics declarations

Compliance with Ethical Standards

This article does not contain any studies with human participants performed by any of the authors.

Conflict of Interest

The authors declare that they have no conflicts of interest.

Ethics approval

This study was approved by the ethics committee of the University of Mazandaran (#IR.UMZ.REC.1397.049) and conducted in accordance with Iran National Committee for Ethics in Biomedical Researches.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Samadian, E., Colagar, A.H., Safarzad, M. et al. Inhibitory potency of the nettle lectin on neovascularization: a biomolecule for carbohydrate-mediated targeting of angiogenesis. Mol Biol Rep 50, 4491–4503 (2023). https://doi.org/10.1007/s11033-023-08355-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-023-08355-y

Keywords

Navigation