Skip to main content

Advertisement

Log in

YBX1/lncRNA SBF2-AS1 interaction regulates proliferation and tamoxifen sensitivity via PI3K/AKT/MTOR signaling in breast cancer cells

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Background

Y-box binding protein 1 (YBX1) is a multifunctional oncoprotein that can interact with several long non-coding RNAs (lncRNAs) to regulate metastasis in malignancies including breast cancer (BC). In the present study, we demonstrated the association of YBX1 with oncogenic lncRNA SBF2-AS1 (SET-binding factor 2 antisense RNA 1) via PI3K/AKT/mTOR signaling to regulate BC cell proliferation. We further explored the involvement of the YBX1/SBF2-AS1/PI3K/AKT/mTOR axis in the restoration of tamoxifen (TAM) sensitivity.

Methods and results

YBX1-SBF2-AS1 association was predicted in silico and verified by RNA immunoprecipitation (RIP)-qPCR assay. Transfection experiments, Real-time RT PCR, Western blots, Phospho AKT/mTOR antibody array kit, and cell proliferation/apoptosis assays were employed to detect the YBX1/SBF2-AS1/ PI3K/AKT/mTOR axis and its effects upon TAM treatment in vitro. We identified that the YBX1 protein specifically binds to lncRNA SBF2-AS1. Our transfection experiments in MCF-7 and MDA-MB-468 cells with SBF2-AS1 silenced or overexpressed YBX1 plasmids, and their negative controls revealed that YBX1 regulates the expression of SBF2-AS1 by forming a positive feedback loop for its activation. We further demonstrated YBX1-SBF2-AS1 association exerts its effects on cell proliferation via PI3K/AKT/mTOR signaling pathway. Furthermore, we observed an increase in TAM sensitivity in BC cells after the knockdown of YBX1-SBF2-AS1 marked by decreased cell proliferation through disruption of the PI3K/AKT/mTOR axis.

Conclusion

Our study has identified a novel YBX1/SBF2-AS1/PI3K/AKT/mTOR regulatory axis which may serve as a potential target to improve the effectiveness and efficacy of TAM treatment in BC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

Data will be made available on reasonable request.

Abbreviations

BC:

Breast cancer

YBX1:

Y-box binding protein

LncRNAs:

Long non-coding RNAs

TAM:

Tamoxifen

ceRNA:

Competitive endogenous RNA

References

  1. Bray F, Ferlay J, Soerjomataram I, Seigel R, Torre L, Jemal A (2018) Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 68(6):394–424. https://doi.org/10.3322/caac.21492

    Article  PubMed  Google Scholar 

  2. Sharma R, Sharma R, Khaket TP, Dutta C, Chakraborty B, Mukherjee TK (2017) Breast cancer metastasis: putative therapeutic role of vascular cell adhesion molecule-1. Cell Onco 40(3):199–208. https://doi.org/10.1007/s13402-017-0324-x

    Article  CAS  Google Scholar 

  3. Janz M, Harbeck N, Dettmar P, Berger U, Schmidt A, Jurchott K, Schmitt M, Royer HD (2002) Y-box factor YB-1 predicts drug resistance and patient outcome in breast cancer independent of clinically relevant tumor biologic factors HER2, uPA and PAI-1. Int J Cancer 97(3):278–282. https://doi.org/10.1002/ijc.1610

    Article  CAS  PubMed  Google Scholar 

  4. Matsumoto K, Wolffe AP (1998) Gene regulation by Y-box proteins: coupling control of transcription and translation. Trends cell bio 8(8):318–323. https://doi.org/10.1016/S0962-8924(98)01300-2

    Article  CAS  Google Scholar 

  5. Habibi G, Leung S, Law JH, Gelmon K, Masoudi H, Turbin D, Pollak M, Nielsen TO, Huntsman D, Dunn SE (2008) Redefining prognostic factors for breast cancer: YB-1 is a stronger predictor of relapse and disease-specific survival than estrogen receptor or HER-2 across all tumor subtypes. Breast Cancer Res 10(5):1–9. https://doi.org/10.1186/bcr2156

    Article  CAS  Google Scholar 

  6. Bargou RC, Jürchott K, Wagener C, Bergmann S, Metzner S, Bommert K, Mapara MY, Winzer KJ, Dietel M, Dörken B, Royer HD (1997) Nuclear localization and increased levels of transcription factor YB-1 in primary human breast cancers are associated with intrinsic MDR1 gene expression. Nat med 3(4):447–450. https://doi.org/10.1038/nm0497-447

    Article  CAS  PubMed  Google Scholar 

  7. Wu J, Lee C, Yokom D, Jiang H, Cheang MC, Yorida E, Turbin D, Berquin IM, Mertens PR, Iftner T, Gilks CB (2006) Disruption of the Y-box binding protein-1 results in suppression of the epidermal growth factor receptor and HER-2. Cancer Res 66(9):4872–4879. https://doi.org/10.1158/0008-5472.CAN-05-3561

    Article  CAS  PubMed  Google Scholar 

  8. Suresh PS, Tsutsumi R, Venkatesh T (2018) YBX1 at the crossroads of non-coding transcriptome, exosomal, and cytoplasmic granular signaling. Eur J Cell Biol 97(3):163–167. https://doi.org/10.1016/j.ejcb.2018.02.003

    Article  CAS  PubMed  Google Scholar 

  9. Peng Y, Tang D, Zhao M, Kajiyama H, Kikkawa F, Kondo Y (2020) Long non-coding RNA: a recently accentuated molecule in chemoresistance in cancer. Cancer Metastasis Rev 39(3):825–835. https://doi.org/10.1007/s10555-020-09910-w

    Article  CAS  PubMed  Google Scholar 

  10. Yin Q, Zheng M, Luo Q, Jiang D, Zhang H, Chen C (2022) YB-1 as an Oncoprotein: Functions, Regulation, Post-Translational Modifications, and Targeted Therapy. Cells 11(7):1217. https://doi.org/10.3390/cells11071217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Zhang Y, Huang YX, Wang DL, Yang B, Yan HY, Lin LH, Li Y, Chen J, Xie LM, Huang YS, Liao JY (2020) LncRNA DSCAM-AS1 interacts with YBX1 to promote cancer progression by forming a positive feedback loop that activates FOXA1 transcription network. Theranostics 10(23):10823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Gong X, Dong T, Niu M, Liang X, Sun S, Zhang Y, Li Y, Li D (2020) LncRNA LCPAT1 upregulation promotes breast cancer progression via enhancing MFAP2 transcription. Mol Ther Nucleic Acids 21:804–881. https://doi.org/10.1016/j.omtn.2020.07.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lv J, Qiu M, Xia W, Liu C, Xu Y, Wang J, Leng X, Huang S, Zhu R, Zhao M, Ji F (2016) High expression of long non-coding RNA SBF2-AS1 promotes proliferation in non-small cell lung cancer. J ExpClinCancer Res 35(1):1–13. https://doi.org/10.1186/s13046-016-0352-9

    Article  CAS  Google Scholar 

  14. Hua YQ, Zhu YD, Xie GQ, Zhang K, Sheng J, Zhu ZF, Ning ZY, Chen H, Chen Z, Meng ZQ (2019) Long non-coding SBF2-AS1 acting as a competing endogenous RNA to sponge microRNA-142–3p to participate in gemcitabine resistance in pancreatic cancer via upregulating TWF1. Aging 11(20):8860–8878. https://doi.org/10.18632/aging.102307

    Article  CAS  PubMed  Google Scholar 

  15. Li Y, Liu G, Li X, Dong H, Xiao W, Lu S (2018) Long non-coding RNA SBF2-AS1 promotes hepatocellular carcinoma progression through regulation of miR-140-5p-TGFBR1 pathway. Biochem Biophys Res Commun 503(4):2826–2832. https://doi.org/10.1016/j.bbrc.2018.08.047

    Article  CAS  PubMed  Google Scholar 

  16. Chen G, Gu Y, Han P, Li Z, Zhao JL, Gao MZ (2019) Long noncoding RNA SBF2- AS1 promotes colorectal cancer proliferation and invasion by inhibiting miR-619-5p activity and facilitating HDAC3 expression. J Cell Physiol 234(10):18688–18696. https://doi.org/10.1002/jcp.28509

    Article  CAS  PubMed  Google Scholar 

  17. He M, Feng L, Qi L, Rao M, Zhu Y (2020) Long noncoding RNASBF2-AS1 Promotes gastric cancer progression via regulating miR-545/EMS1 axis. Biomed Res Int. https://doi.org/10.1155/2020/6590303

    Article  PubMed  PubMed Central  Google Scholar 

  18. Zhang Q, Pan X, You D (2020) Overexpression of long non-coding RNA SBF2-AS1 promotes cell progression in esophageal squamous cell carcinoma (ESCC) by repressing miR-494 to up-regulate PFN2 expression. Biol Open. https://doi.org/10.1242/bio.048793

    Article  PubMed  PubMed Central  Google Scholar 

  19. Zha W, Li X, Tie X, Xing Y, Li H, Gao F, Ye T, Du W, Chen R, Liu Y (2021) The molecular mechanisms of the long noncoding RNA SBF2-AS1 in regulating the proliferation of oesophageal squamous cell carcinoma. SciRep 11(1):805. https://doi.org/10.1038/s41598-020-80817-w

    Article  CAS  Google Scholar 

  20. Xia W, Liu Y, Cheng T, Xu T, Dong M, Hu X (2020) Down-regulated lncRNA SBF2-AS1 inhibits tumorigenesis and progression of breast cancer by sponging microRNA-143 and repressing RRS1. J Exp Clin Cancer Res 39(1):18. https://doi.org/10.1186/s13046-020-1520-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Zhang Z, Yin J, Lu C, Wei Y, Zeng A, You Y (2019) Exosomal transfer of long noncoding RNA SBF2-AS1 enhances chemoresistance to temozolomide in glioblastoma. J Exp Clin Cancer Res 38(1):166. https://doi.org/10.1186/s13046-019-1139-6

    Article  PubMed  PubMed Central  Google Scholar 

  22. Yu Z, Wang G, Zhang C, Liu Y, Chen W, Wang H, Liu H (2020) LncRNA SBF2-AS1 affects the radiosensitivity of non-small cell lung cancer via modulating microRNA-302a/MBNL3 axis. Cell Cycle 19(3):300–316. https://doi.org/10.1080/15384101.2019.1708016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Wang A, Wang J (2020) E2F1-induced overexpression of long noncoding RNA SBF2-AS1 promotes non-small-cell lung cancer metastasis through regulating miR-362-3p/GRB2 axis. DNA Cell Biol 39(7):1290–1298. https://doi.org/10.1089/dna.2020.5426

    Article  CAS  PubMed  Google Scholar 

  24. Agostini F, Zanzoni A, Klus P, Marchese D, Cirillo D, Tartaglia GG (2013) catRAPID omics: a web server for large-scale prediction of protein–RNA interactions. Bioinformatics 29(22):2928–2930. https://doi.org/10.1093/bioinformatics/btt495

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Tang Z, Kang B, Li C, Chen T, Zhang Z (2019) GEPIA2: an enhanced web server for large-scale expression profiling and interactive analysis. Nucleic Acids Res 47(W1):556–560. https://doi.org/10.1093/nar/gkz430

    Article  CAS  Google Scholar 

  26. Muppirala UK, Honavar VG, Dobbs D (2011) Predicting RNA-Protein Interactions Using Only Sequence Information. BMC Bioinformatics 12(1):1–11. https://doi.org/10.1186/1471-2105-12-489

    Article  CAS  Google Scholar 

  27. Győrffy B (2021) Survival analysis across the entire transcriptome identifies biomarkers with the highest prognostic power in breast cancer. Comput Struct Biotechnol J 19:4101–4109. https://doi.org/10.1016/j.csbj.2021.07.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Fekete JT, Győrffy B (2019) Roc plot. Org: Validating predictive biomarkers of chemotherapy/hormonal therapy/anti-HER2 therapy using transcriptomic data of 3,104 breast cancer patients. Int J Cancer 145(11):3140–3151. https://doi.org/10.1002/ijc.32369

    Article  CAS  PubMed  Google Scholar 

  29. Kehl T, Kern F, Backes C, Fehlmann T, Stöckel D, Meese E, Lenhof HP, Keller A (2020) miRPathDB 2.0: a novel release of the miRNA Pathway Dictionary Database. Nucleic acids Res 48(D1):D142–D147. https://doi.org/10.1093/nar/gkz1022

    Article  CAS  PubMed  Google Scholar 

  30. Li Z, Chen Y, Zhang Y, Fang J, Xu Z, Zhang H, Mao M, Zhang L, Pian C (2022) NcPath: A novel tool for visualization and enrichment analysis of human non-coding RNA and KEGG signaling pathways. bioRxiv. https://doi.org/10.1101/2022.06.03.494777

    Article  PubMed  PubMed Central  Google Scholar 

  31. Ray D, Kazan H, Chan ET, Castillo LP, Chaudhry S, Talukder S, Blencowe BJ, Morris Q, Hughes TR (2009) Rapid and systematic analysis of the RNA recognition specificities of RNA-binding proteins. Nat Biotechnol 7:667–670. https://doi.org/10.1038/nbt.1550

    Article  CAS  Google Scholar 

  32. Lu Q, Lou J, Cai R, Han W, Pan H (2021) Emerging roles of a pivotal lncRNA SBF2-AS1 in cancers. Cancer Cell Int 21(1):1–15. https://doi.org/10.1186/s12935-021-02123-3

    Article  CAS  Google Scholar 

  33. Chen Q, Guo SM, Huang HQ, Huang GP, Li Y, Li ZH, Huang R, Xiao L, Fan CR, Yuan Q, Zheng SL (2020) Long noncoding RNA SBF2-AS1 contributes to the growth and metastatic phenotypes of NSCLC via regulating miR-338–3p/ADAM17 axis. Aging (Albany NY) 12(18):17902. https://doi.org/10.18632/aging.103332

    Article  PubMed  Google Scholar 

  34. Traboulsi T, El Ezzy M, Gleason J, Mader S (2017) Antiestrogens: Structure-activity relationships and use in breast cancer treatment. J Mol Endocrinol 58:R15–R31. https://doi.org/10.1530/JME-16-0024

    Article  CAS  PubMed  Google Scholar 

  35. Ring A, Dowsett M (2004) Mechanisms of tamoxifen resistance. Endocr Relat Cancer 11:643–658. https://doi.org/10.1677/erc.1.00776

    Article  CAS  PubMed  Google Scholar 

  36. Yang F, Chen S, He S, Huo Q, Hu Y, Xie N (2020) YB-1 interplays with ERα to regulate the stemness and differentiation of ER-positive breast cancer stem cells. Theranostics. 10(8):3816

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Davies AH, Reipas K, Hu K, Berns R, Firmino N, Stratford AL, Dunn SE (2015) Inhibition of RSK with the novel small-molecule inhibitor LJI308 overcomes chemoresistance by eliminating cancer stem cells. Oncotarget 6:20570–20577. https://doi.org/10.18632/oncotarget.4135

    Article  PubMed  PubMed Central  Google Scholar 

  38. Ye P, Feng L, Shi S, Dong C (2022) The Mechanisms of lncRNA-Mediated Multidrug Resistance and the Clinical Application Prospects of lncRNAs in Breast Cancer. Cancers 14(9):2101. https://doi.org/10.3390/cancers14092101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Fabbiano F, Corsi J, Gurrieri E, Trevisan C, Notarangelo M, D’Agostino VG (2020) RNA packaging into extracellular vesicles: An orchestra of RNA-binding proteins? J Extracell Vesicles. 10(2):e12043. https://doi.org/10.1002/jev2.12043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Liu Y, Zhao J, Zhang W, Gan J, Hu C, Huang G, Zhang Y (2015) lncRNA GAS5 enhances G1 cell cycle arrest via binding to YBX1 to regulate p21 expression in stomach cancer. Sci Rep 5:10159. https://doi.org/10.1038/srep10159

    Article  PubMed  PubMed Central  Google Scholar 

  41. Shurtleff MJ, Temoche-Diaz MM, Karfilis KV, Ri S, Schekman R (2016) Y-box protein 1 is required to sort microRNAs into exosomes in cells and in a cell-free reaction. Elife 5:e19276. https://doi.org/10.7554/eLife.19276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Yin Z, Zhou Y, Ma T, Chen S, Shi N, Zou Y, Hou B, Zhang C (2020) Down-regulated lncRNA SBF2-AS1 in M2 macrophage-derived exosomes elevates miR-122-5p to restrict XIAP, thereby limiting pancreatic cancer development. J Cell Mol Med 24(9):5028–5038. https://doi.org/10.1111/jcmm.15125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Zhang X, Wang W, Zhu W, Dong J, Cheng Y, Yin Z, Shen F (2019) Mechanisms and Functions of Long Non-Coding RNAs at Multiple Regulatory Levels. Int J Mol Sci 20(22):5573. https://doi.org/10.3390/ijms20225573

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Zeng X, Liu Y, Zhu H, Chen D, andHu W. (2019) Downregulation of miR-216a-5p by long noncoding RNA PVT1 suppresses colorectal cancer progression via modulation of YBX1 expression. Cancer manag res 11:6981–6993. https://doi.org/10.2147/CMAR.S208983

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Lyabin DN, Eliseeva IA, Ovchinnikov LP (2012) YB-1 synthesis is regulated by mTOR signaling pathway. PLoS ONE 7(12):52527. https://doi.org/10.1371/journal.pone.0052527

    Article  CAS  Google Scholar 

  46. Delicato A, Montuori E, Angrisano T, Pollice A, Calabrò V (2021) YB-1 Oncoprotein Controls PI3K/Akt Pathway by Reducing Pten Protein Level. Genes 12(10):1551. https://doi.org/10.3390/genes12101551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Guerrero-Zotano A, Mayer IA, Arteaga CL (2016) PI3K/AKT/mTOR: role in breast cancer progression, drug resistance, and treatment. Cance Metastasis Rev 35(4):515–524. https://doi.org/10.3389/fphar.2021.628690

    Article  CAS  Google Scholar 

  48. Liu CY, Hung MH, Wang DS, Chu PY, Su JC, Teng TH, Huang CT, Chao TT, Wang CY, Shiau CW, Tseng LM, Chen KF (2014) Tamoxifen induces apoptosis through cancerous inhibitor of protein phosphatase 2A-dependent phospho-Akt inactivation in estrogen receptor-negative human breast cancer cells. Breast Cancer Res 16(5):431. https://doi.org/10.1186/s13058-014-0431-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Campbell RA, Bhat-Nakshatri P, Patel NM, Constantinidou D, Ali S, Nakshatri H (2001) Phosphatidylinositol 3-kinase/AKT-mediated activation of estrogen receptor α: a new model for anti-estrogen resistance. J Biol Chem 276(13):9817–9824. https://doi.org/10.1074/jbc.M010840200

    Article  CAS  PubMed  Google Scholar 

  50. Shibata T, Watari K, Kawahara A, Sudo T, Hattori S, Murakami Y, Izumi H, Itou J, Toi M, Akiba J, Akagi Y (2020) Targeting Phosphorylation of Y-Box–Binding Protein YBX1 by TAS0612 and Everolimus in Overcoming Antiestrogen ResistanceYBX1 Phosphorylation by Antiestrogen Resistance. Mol Cancer Ther 19(3):882–894. https://doi.org/10.1158/1535-7163.MCT-19-0690

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We extend our gratitude to the Central University of Kerala for their core grant support. We thank the reviewers for their critical insights to improve the manuscript.

Funding

TV acknowledges grants from DST-SERB (YSS/2014/000061) and DBT (BT/PR23887/MED/30/1871/2017). SAH acknowledges CSIR for fellowship.

Author information

Authors and Affiliations

Authors

Contributions

SAH and TV conceived the project and designed the experiments. SAH performed all the experiments and data analysis. SAH wrote the first draft of the manuscript. TV edited the draft of the manuscript. SAH and TV revised the manuscript. TV provided reagents/materials and supervised the project.

Corresponding author

Correspondence to Thejaswini Venkatesh.

Ethics declarations

Conflict of interest

The authors have stated that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 1880 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hussain, S.A., Venkatesh, T. YBX1/lncRNA SBF2-AS1 interaction regulates proliferation and tamoxifen sensitivity via PI3K/AKT/MTOR signaling in breast cancer cells. Mol Biol Rep 50, 3413–3428 (2023). https://doi.org/10.1007/s11033-023-08308-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-023-08308-5

Keywords

Navigation