Skip to main content

Advertisement

Log in

Crocetin confers neuroprotection and is anti-inflammatory in rats with induced glaucoma

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Background

Crocetin is a bioactive ingredient in saffron, derived from the Crocus sativus stigmas of the Iridaceae family. As a chemically carotenoid derivative, crocetin exhibites effects like anti-inflammatory, antioxidant, neuroprotective, etc. However, the protective effect of crocetin on glaucoma and its mechanism remains unclear. The current study assesed the neuroprotective and anti-inflammatory effects of crocetin on retinal neurons in glaucoma rats which were induced by 0.3% carbomer injection into the anterior chamber.

Methods and results

The pathological structures on the retina and optic nerve were observed and examined by H&E staining and transmission electron microscopy. Immunohistochemical staining was used to detect the expression of TNF-α, IL-1β, and IL-6 of the retina and the expression of a brain-derived neurotrophic factor (BDNF) in the primary visual cortex (PVC). Western blot was carried out to detect the expression of PI3K, Akt, and NF-κB in the retina. It was found that crocetin ameliorated the pathological changes of the retina and ON and reduced the number of apoptotic retinal ganglion cells. Immunohistochemical staining showed that crocetin could decrease the contents of TNF-α, IL-1β, and IL-6 and increase the contents of BDNF. Western blot showed that crocetin was found to suppress the expression of PI3K, Akt, and NF-κB.

Conclusion

The results obtained in this study have indicated that crocetin showes neuroprotective effects on retinal ganglion cells in glaucoma rats and inhibits retinal dysfunction. Meanwhile, crocetin exerted an anti-inflammatory effect to protect the retina by inhibiting the expression of the PI3K/Akt/NF-κB signaling pathway. This work provides substantial evidence that crocetin may be a potential drug for the treatment of glaucoma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Dal Monte M, Cammalleri M, Amato R, Pezzino S, Corsaro R, Bagnoli P, Rusciano D (2020) A Topical Formulation of Melatoninergic Compounds Exerts Strong Hypotensive and Neuroprotective Effects in a Rat Model of Hypertensive Glaucoma. Int J Mol Sci 21:9267

    Article  Google Scholar 

  2. Fernández-Albarral J, de Hoz R, Ramírez A, López-Cuenca I, Salobrar-García E, Pinazo-Durán M, Ramírez J, Salazar J (2020) Beneficial effects of saffron (Crocus sativus L.) in ocular pathologies, particularly neurodegenerative retinal diseases. Neural Regen Res 15:1408–1416

    Article  Google Scholar 

  3. Tham Y, Li X, Wong TY, Quigley HA, Aung T, Cheng C (2014) Global Prevalence of Glaucoma and Projections of Glaucoma Burden through 2040. Ophthalmology 121:2081–2090

    Article  Google Scholar 

  4. Wang J, Li B, Huang D, Norat P, Grannonico M, Cooper RC, Gui Q, Chow N, Liu W, Yang H (2021) Nano-in-Nano dendrimer gel particles for efficient topical delivery of antiglaucoma drugs into the eye. Chem Eng J 425:130498

    Article  CAS  Google Scholar 

  5. Rodrigo MJ, Cardiel MJ, Fraile JM, Mendez-Martinez S, Martinez-Rincon T, Subias M, Polo V, Ruberte J, Ramirez T, Vispe E, Luna C, Mayoral JA, Garcia-Martin E (2020) Brimonidine-LAPONITE (R) intravitreal formulation has an ocular hypotensive and neuroprotective effect throughout 6 months of follow-up in a glaucoma animal model. Biomater Sci-Uk 8:6246–6626

    Article  CAS  Google Scholar 

  6. Wang Y, Chen S, Wang J, Liu Y, Chen Y, Wen T, Fang X, Vidal-Sanz M, Jonas JB, Zhang X (2021) MicroRNA-93/STAT3 signalling pathway mediates retinal microglial activation and protects retinal ganglion cells in an acute ocular hypertension model. Cell Death Dis 12:41

    Article  CAS  Google Scholar 

  7. Adornetto A, Russo R, Parisi V (2019) Neuroinflammation as a target for glaucoma therapy. Neural Regen Res 14:391–394

    Article  Google Scholar 

  8. Baudouin C, Kolko M, Melik-Parsadaniantz S, Messmer EM (2021) Inflammation in Glaucoma: From the back to the front of the eye, and beyond.Prog Retin Eye Res83

  9. Wilson GN, Inman DM, Dengler-Crish CM, Smith MA, Crish SD (2015) Early pro-inflammatory cytokine elevations in the DBA/2J mouse model of glaucoma.J Neuroinflamm12

  10. Chakravarti T, Moghadam M, Proudfoot JA, Weinreb RN, Bowd C, Zangwill LM (2021) Agreement Between 10 – 2 and 24-2 C Visual Field Test Protocols for Detecting Glaucomatous Central Visual Field Defects. J Glaucoma 30:E285–E291

    Article  Google Scholar 

  11. Lin S, Li Q, Jiang S, Xu Z, Jiang Y, Liu L, Jiang J, Tong Y, Wang P (2021) Crocetin ameliorates chronic restraint stress-induced depression-like behaviors in mice by regulating MEK/ERK pathways and gut microbiota.J Ethnopharmacol268

  12. Bolhassani A (2018) Bioactive Components of Saffron and Their Pharmacological Properties, Vol. 58, pp. 289–311

  13. Xu Z, Lin S, Tong Z, Chen S, Cao Y, Li Q, Jiang Y, Cai W, Tong Y, Zahra BS, Wang P (2022) Crocetin ameliorates non-alcoholic fatty liver disease by modulating mitochondrial dysfunction in L02 cells and zebrafish model. J Ethnopharmacol 285:114873

    Article  CAS  Google Scholar 

  14. Bend JR, Xia XY, Chen D, Awaysheh A, Lo A, Rieder MJ, Rylett RJ (2015) Attenuation of Oxidative Stress in HEK 293 Cells by the TCM Constituents Schisanhenol, Baicalein, Resveratrol or Crocetin and Two Defined Mixtures. J Pharm Pharm Sci 18:661–682

    Article  Google Scholar 

  15. Wen Y, He Z, Hou D, Qin S (2021) Crocetin Exerts Its Anti-inflammatory Property in LPS-Induced RAW264.7 Cells Potentially via Modulation on the Crosstalk between MEK1/JNK/NF-κB/iNOS Pathway and Nrf2/HO-1 Pathway. Oxid Med Cell Longev 2021: 1–18

  16. BISTI S, MACCARONE R, FALSINI B (2014) Saffron and retina: Neuroprotection and pharmacokinetics. Visual Neurosci 31:355–361

    Article  Google Scholar 

  17. Wang H, Ma J, Shang Q, An J, Chen H, Wang C (2019) Safety, pharmacokinetics, and prevention effect of intraocular crocetin in proliferative vitreoretinopathy. Biomed Pharmacother 109:1211–1220

    Article  CAS  Google Scholar 

  18. Yamauchi M, Tsuruma K, Imai S, Nakanishi T, Umigai N, Shimazawa M, Hara H (2011) Crocetin prevents retinal degeneration induced by oxidative and endoplasmic reticulum stresses via inhibition of caspase activity. Eur J Pharmacol 650:110–119

    Article  CAS  Google Scholar 

  19. Ishizuka F, Shimazawa M, Umigai N, Ogishima H, Nakamura S, Tsuruma K, Hara H (2013) Crocetin, a carotenoid derivative, inhibits retinal ischemic damage in mice. Eur J Pharmacol 703:1–10

    Article  CAS  Google Scholar 

  20. Ohno Y, Nakanishi T, Umigai N, Tsuruma K, Shimazawa M, Hara H (2012) Oral administration of crocetin prevents inner retinal damage induced by N-methyl-d-aspartate in mice. Eur J Pharmacol 690:84–89

    Article  CAS  Google Scholar 

  21. Kim H, Park J, Park S (2013) Experimental chronic ocular hypertension by anterior chamber injection of 0.3% carbomer solution in the rat. Clin Exp Ophthalmol 41:404–412

    Article  Google Scholar 

  22. Qiu C, Yao J, Zhang X, Zhang R, Sun X, Qian S (2020) The Dynamic Scleral Extracellular Matrix Alterations in Chronic Ocular Hypertension Model of Rats. Front Physiol 11.

  23. Shanmugham V, Subban R (2021) Extraction of capsanthin fromCapsicum annum L fruits and its effect on carbomer-induced intraocular pressure in Albino Wistar rats.J Food Biochem45

  24. Blangetti M, Rolando B, Marini E, Chegaev K, Guglielmo S, Lazzarato L, Lucarini L, Masini E, Fruttero R (2017) gem-Dinitroalkyl Benzenes: A Novel Class of IOP-Lowering Agents for the Treatment of Ocular Hypertension. Acs Med Chem Lett 8:1054–1059

    Article  CAS  Google Scholar 

  25. Lanzi C, Lucarini L, Durante M, Sgambellone S, Pini A, Catarinicchia S, Łażewska D, Kieć-Kononowicz K, Stark H, Masini E (2019) Role of Histamine H3 Receptor Antagonists on Intraocular Pressure Reduction in Rabbit Models of Transient Ocular Hypertension and Glaucoma. Int J Mol Sci 20:981

    Article  CAS  Google Scholar 

  26. Sorkou KN, Manthou ME, Meditskou S, Tsinopoulos IT, Ziakas N, Kouzi-Koliakou K (2021) Lens Epithelial Surface Disorders in Exfoliation Syndrome: A Scanning and Transmission Electron Microscopy Study. Ophthalmic Res 64:216–223

    Article  Google Scholar 

  27. Hu X, Zhao GL, Xu MX, Zhou H, Li F, Miao Y, Lei B, Yang XL, Wang Z (2021) Interplay between Muller cells and microglia aggravates retinal inflammatory response in experimental glaucoma. J Neuroinflammation 18:303

    Article  CAS  Google Scholar 

  28. Yaman D, Takmaz T, Yüksel N, Dinçer SA, Şahin F (2020) 0. Evaluation of silent information regulator T (SIRT) 1 and Forkhead Box O (FOXO) transcription factor 1 and 3a genes in glaucoma. Mol Biol Rep 47: 9337–9344

  29. Dias MS, Luo X, Ribas VT, Petrs-Silva H, Koch JC (2022) The Role of Axonal Transport in Glaucoma.Int J Mol Sci23

  30. Ye M, Huang J, Mou Q, Luo J, Hu Y, Lou X, Yao K, Zhao B, Duan Q, Li X, Zhang H, Zhao Y (2021) CD82 protects against glaucomatous axonal transport deficits via mTORC1 activation in mice. Cell Death Dis 12:1149

    Article  CAS  Google Scholar 

  31. Ma S, Zhang K, Zhu Y, Cao X, Wang L (2021) Effect of papaverine on axonal outgrowth of primary retinal ganglion cells of Sprague Dawley rats. Exp Eye Res 212:108797

    Article  CAS  Google Scholar 

  32. Yun H, Lathrop KL, Yang E, Sun M, Kagemann L, Fu V, Stolz DB, Schuman JS, Du Y (2014) A laser-induced mouse model with long-term intraocular pressure elevation. PLoS ONE 9:e107446

    Article  Google Scholar 

  33. Schaub JA, Kimball EC, Steinhart MR, Nguyen C, Pease ME, Oglesby EN, Jefferys JL, Quigley HA (2017) Regional Retinal Ganglion Cell Axon Loss in a Murine Glaucoma Model. Invest Ophth Vis Sci 58:2765–2773

    Article  Google Scholar 

  34. E JY, Mihailovic A, Garzon C, Schrack JA, Li T, West SK, Gitlin LN, Friedman DS, Ramulu PY (2021) Association Between Visual Field Damage and Gait Dysfunction in Patients With Glaucoma. Jama Ophthalmol 139:1053–1060

    Article  Google Scholar 

  35. Bartlett RL, Frost BE, Mortlock KE, Fergusson JR, White N, Morgan JE, North RV, Albon J (2022) Quantifying biomarkers of axonal degeneration in early glaucoma to find the disc at risk. Sci Rep 12:9366

    Article  CAS  Google Scholar 

  36. Cha YW, Kim ST (2021) Serum and aqueous humor levels of brain-derived neurotrophic factor in patients with primary open-angle glaucoma and normal-tension glaucoma. Int Ophthalmol 41:3869–3875

    Article  Google Scholar 

  37. Lambuk L, Mohd LM, Ahmad S, Iezhitsa I, Agarwal R, Uskokovic V, Mohamud R (2022) Brain-Derived Neurotrophic Factor-Mediated Neuroprotection in Glaucoma: A Review of Current State of the Art. Front Pharmacol 13:875662

    Article  CAS  Google Scholar 

  38. Lazaldin M, Iezhitsa I, Agarwal R, Agarwal P, Ismail NM (2023) Neuroprotective effects of exogenous brain-derived neurotrophic factor on amyloid-beta 1-40-induced retinal degeneration. Neural Regen Res 18:382–388

    Article  Google Scholar 

  39. Almasieh M, Wilson AM, Morquette B, Vargas C, Di Polo A (2012) The molecular basis of retinal ganglion cell death in glaucoma. Prog Retin Eye Res 31:152–181

    Article  CAS  Google Scholar 

  40. Hvozda Arana AG, Vitar L, Reides RM, Lerner CG, Ferreira SM (2020) Glaucoma causes redox imbalance in the primary visual cortex by modulating NADPH oxidase-4, iNOS, and Nrf2 pathway in a rat experimental model. Exp Eye Res 200:108225

    Article  CAS  Google Scholar 

  41. Krishnan A, Kocab AJ, Zacks DN, Marshak-Rothstein A, Gregory-Ksander M (2019) A small peptide antagonist of the Fas receptor inhibits neuroinflammation and prevents axon degeneration and retinal ganglion cell death in an inducible mouse model of glaucoma.J Neuroinflamm16

  42. Tezel G (2022) Molecular regulation of neuroinflammation in glaucoma: Current knowledge and the ongoing search for new treatment targets. Prog Retin Eye Res 87:100998

    Article  CAS  Google Scholar 

  43. Yang Q, Li Y, Luo L (2018) Effect of myricetin on primary open-angle glaucoma. Transl Neurosci 9:132–141

    Article  CAS  Google Scholar 

  44. Chaudhry S, Dunn H, Carnt N, White A (2022) Nutritional supplementation in the prevention and treatment of glaucoma. Surv Ophthalmol 67:1081–1098

    Article  Google Scholar 

  45. Hosseini A, Razavi BM, Hosseinzadeh H (2018) Pharmacokinetic Properties of Saffron and its Active Components. Eur J Drug Metab Ph 43:383–390

    Article  CAS  Google Scholar 

  46. Wu Y, Wang Z, Fu X, Lin Z, Yu K (2020) Geraniol-mediated osteoarthritis improvement by down-regulating PI3K/Akt/NF-κB and MAPK signals: In vivo and in vitro studies. Int Immunopharmacol 86:106713

    Article  CAS  Google Scholar 

  47. Efferth T, Oesch F (2021) The immunosuppressive activity of artemisinin-type drugs towards inflammatory and autoimmune diseases. Med Res Rev 41:3023–3061

    Article  CAS  Google Scholar 

  48. Schnichels S, Hurst J, de Vries JW, Ullah S, Frößl K, Gruszka A, Löscher M, Bartz-Schmidt K, Spitzer MS, Herrmann A (2021) Improved Treatment Options for Glaucoma with Brimonidine-Loaded Lipid DNA Nanoparticles. Acs Appl Mater Inter 13:9445–9456

    Article  CAS  Google Scholar 

  49. Belfort R, Paula JS, Lopes Silva MJ, Della Paolera M, Kim T, Chen MY, Goodkin ML (2020) Fixed-combination Bimatoprost/Brimonidine/Timolol in Glaucoma: A Randomized, Masked, Controlled, Phase III Study Conducted in Brazil*. Clin Ther 42:263–275

    Article  CAS  Google Scholar 

  50. Hernández M, Urcola JH, Vecino E (2008) Retinal ganglion cell neuroprotection in a rat model of glaucoma following brimonidine, latanoprost or combined treatments. Exp Eye Res 86:798–806

    Article  Google Scholar 

  51. Jung K, Kim H, Kee Park C (eds) (2015) α2-Adrenergic modulation of the glutamate receptor and transporter function in a chronic ocular hypertension model. Eur J Pharmacol 765: 274–283

  52. Nizari S, Guo L, Davis BM, Normando EM, Galvao J, Turner LA, Bizrah M, Dehabadi M, Tian K, Cordeiro MF (2016) Non-amyloidogenic effects of α2 adrenergic agonists: implications for brimonidine-mediated neuroprotection. Cell Death Dis 7:e2514–e2514

    Article  CAS  Google Scholar 

  53. Lymperopoulos A, Karkoulias G, Koch WJ, Flordellis CS (2006) α2-Adrenergic receptor subtype-specific activation of NF-κB in PC12 cells. Neurosci Lett 402:210–215

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was financially supported by the key research and development project of Zhejiang Province (No.2022C03050) and the Key Science and Technology Project of Jinhua City, Zhejiang Province (No.2020-1-025).

Funding

This research was financially supported by the key research and development project of Zhejiang Province (No.2022C03050) and the Key Science and Technology Project of Jinhua City, Zhejiang Province (No.2020-1-025).

Author information

Authors and Affiliations

Authors

Contributions

Ping Wang and Suhong Chen designed the study, Qiaoqiao Li, Peishi Feng, Susu Lin, and Jiajing Zhao performed the research, Zijin Xu, Ziwei Chen, and Zirui Luo analyzed the data and interpreted the results, Qiaoqiao Li, Peishi Feng, and Yi Tao were involved in writing the manuscript. All authors discussed the results and revised the manuscript.

Corresponding authors

Correspondence to Suhong Chen or Ping Wang.

Ethics declarations

Declaration of competing interest

The authors declare that they have no competing interests in this work.

Compliance with Ethical Standards

All applicable international, national, and institutional guidelines for the care and use of animals were followed. All animal studies were carried out as per the Guidelines for the Care and Use of Laboratory Animals at the Zhejiang University of Technology in Hangzhou, China, provided vide ethical code No. 20200810104.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Q., Feng, P., Lin, S. et al. Crocetin confers neuroprotection and is anti-inflammatory in rats with induced glaucoma. Mol Biol Rep 50, 1321–1331 (2023). https://doi.org/10.1007/s11033-022-08102-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-022-08102-9

Keywords

Navigation