Skip to main content

Advertisement

Log in

The interplay of cytokine signaling and non-coding RNAs in head and neck squamous cell carcinoma pathobiology

  • Review
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Head and neck squamous cell carcinoma (HNSCC) is a leading cause of cancer-related death worldwide. Despite aggressive treatment approaches, the recurrence of HNSCC remains a challenge. Cytokines play an essential role in HNSCC development and progression. They are not only involved in promoting cancer growth but may also be involved in an anti-tumor immune response. Non-coding RNAs (ncRNAs) have emerged as important transcriptional and post-transcriptional mediators of cytokine function in HNSCC. This review focuses on the complex regulatory network among regulatory ncRNAs and cytokines during HNSCC pathogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

HNSCC:

Head and neck squamous cell carcinoma

OSCC:

Oral squamous cell carcinoma

NPC:

Nasopharyngeal carcinoma

LSCC:

Laryngeal squamous cell carcinoma

TSCC:

Tongue squamous cell carcinoma

OPSCC:

Oropharyngeal squamous cell carcinoma

HPV:

Human papillomavirus

TGF-β:

Transforming growth factor-β

TGFβRII:

Transforming growth factor- β type II receptor

IL:

Interleukin

TNF‐α:

Tumor necrosis factor‐α

VEGF:

Vascular endothelial growth factor

PDGF:

Platelet-derived growth factor

MIF:

Macrophage migration inhibitory factor

IFN:

Interferon

NF-κB:

Nuclear factor-k-gene binding

STAT:

Signal transducer and activator of transcription

MAPK:

Mitogen-activated protein kinase

PI3K:

Phosphatidylinositol 3-kinase

ncRNAs:

Non-coding RNAs

lncRNAs:

Long non-coding RNAs

miRNAs:

MicroRNAs

circRNAs:

Circular RNAs

EMT:

Epithelial to mesenchymal transition

TME:

Tumor microenvironment

CAF:

Cancer-associated fibroblasts

CSC:

Cancer stem cells

References

  1. Johnson DE, Burtness B, Leemans CR et al (2020) Head and neck squamous cell carcinoma. Nat Rev Dis Primer 6:1–22. https://doi.org/10.1038/s41572-020-00224-3

    Article  Google Scholar 

  2. Canning M, Guo G, Yu M et al (2019) heterogeneity of the head and neck squamous cell carcinoma immune landscape and its impact on immunotherapy. Front Cell Dev Biol. https://doi.org/10.3389/fcell.2019.00052

    Article  PubMed  PubMed Central  Google Scholar 

  3. Zhang L, Meng X, Zhu X et al (2019) Long non-coding RNAs in oral squamous cell carcinoma: biologic function, mechanisms and clinical implications. Mol Cancer 18:102. https://doi.org/10.1186/s12943-019-1021-3

    Article  PubMed  PubMed Central  Google Scholar 

  4. Muzaffar J, Bari S, Kirtane K, Chung CH (2021) Recent advances and future directions in clinical management of head and neck squamous cell carcinoma. Cancers 13:338. https://doi.org/10.3390/cancers13020338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Fialová A, Koucký V, Hajdušková M et al (2020) Immunological network in head and neck squamous cell carcinoma—a prognostic tool beyond HPV status. Front Oncol 10:1701. https://doi.org/10.3389/fonc.2020.01701

    Article  PubMed  PubMed Central  Google Scholar 

  6. Koucký V, Hladíková K, Táborská E et al (2021) The cytokine milieu compromises functional capacity of tumor-infiltrating plasmacytoid dendritic cells in HPV-negative but not in HPV-positive HNSCC. Cancer Immunol Immunother 70:2545–2557. https://doi.org/10.1007/s00262-021-02874-y

    Article  CAS  PubMed  Google Scholar 

  7. Dong H, Shu X, Xu Q et al (2021) Current status of human papillomavirus-related head and neck cancer: from viral genome to patient care. Virol Sin 36:1284–1302. https://doi.org/10.1007/s12250-021-00413-8

    Article  PubMed  PubMed Central  Google Scholar 

  8. Leemans CR, Snijders PJF, Brakenhoff RH (2018) The molecular landscape of head and neck cancer. Nat Rev Cancer 18:269–282. https://doi.org/10.1038/nrc.2018.11

    Article  CAS  PubMed  Google Scholar 

  9. Alsahafi E, Begg K, Amelio I et al (2019) Clinical update on head and neck cancer: molecular biology and ongoing challenges. Cell Death Dis 10:1–17. https://doi.org/10.1038/s41419-019-1769-9

    Article  Google Scholar 

  10. Nisar S, Yousuf P, Masoodi T et al (2021) Chemokine-cytokine networks in the head and neck tumor microenvironment. Int J Mol Sci 22:4584. https://doi.org/10.3390/ijms22094584

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Griffith JW, Sokol CL, Luster AD (2014) Chemokines and chemokine receptors: positioning cells for host defense and immunity. Annu Rev Immunol 32:659–702. https://doi.org/10.1146/annurev-immunol-032713-120145

    Article  CAS  PubMed  Google Scholar 

  12. Borish LC, Steinke JW (2003) 2. Cytokines and chemokines. J Allergy Clin Immunol 111:S460–S475. https://doi.org/10.1067/mai.2003.108

    Article  CAS  PubMed  Google Scholar 

  13. Ralli M, Grasso M, Gilardi A et al (2020) The role of cytokines in head and neck squamous cell carcinoma: a review. Clin Ter 171(2):e7–e93

    Google Scholar 

  14. Partlová S, Bouček J, Kloudová K et al (2015) Distinct patterns of intratumoral immune cell infiltrates in patients with HPV-associated compared to non-virally induced head and neck squamous cell carcinoma. Oncoimmunology 4:e965570. https://doi.org/10.4161/21624011.2014.965570

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kindt N, Descamps G, Lechien JR et al (2019) Involvement of HPV infection in the release of macrophage migration inhibitory factor in head and neck squamous cell carcinoma. J Clin Med 8:75. https://doi.org/10.3390/jcm8010075

    Article  CAS  PubMed Central  Google Scholar 

  16. Mytilineos D, Ezić J, von Witzleben A et al (2020) Peripheral cytokine levels differ by HPV status and change treatment-dependently in patients with head and neck squamous cell carcinoma. Int J Mol Sci 21:5990. https://doi.org/10.3390/ijms21175990

    Article  CAS  PubMed Central  Google Scholar 

  17. Bedi A, Chang X, Noonan K et al (2012) Inhibition of TGF-β enhances the in vivo antitumor efficacy of EGF receptor-targeted therapy. Mol Cancer Ther 11:2429–2439. https://doi.org/10.1158/1535-7163.MCT-12-0101-T

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Jo S, Juhasz A, Zhang K et al (2009) Human papillomavirus infection as a prognostic factor in oropharyngeal squamous cell carcinomas treated in a prospective phase II clinical trial. Anticancer Res 29(5):1467–1474

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Troy JD, Weissfeld JL, Youk AO et al (2013) Expression of EGFR, VEGF, and NOTCH1 suggest differences in tumor angiogenesis in HPV-positive and HPV-negative head and neck squamous cell carcinoma. Head Neck Pathol 7:344–355. https://doi.org/10.1007/s12105-013-0447-y

    Article  PubMed  PubMed Central  Google Scholar 

  20. Baruah P, Lee M, Wilson POG et al (2015) Impact of p16 status on pro- and anti-angiogenesis factors in head and neck cancers. Br J Cancer 113:653–659. https://doi.org/10.1038/bjc.2015.251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Pang X, Tang Y-L, Liang X-H (2018) Transforming growth factor-β signaling in head and neck squamous cell carcinoma: insights into cellular responses. Oncol Lett 16:4799–4806. https://doi.org/10.3892/ol.2018.9319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Wang X, Lin Y (2008) Tumor necrosis factor and cancer, buddies or foes? Acta Pharmacol Sin 29:1275–1288. https://doi.org/10.1111/j.1745-7254.2008.00889.x

    Article  CAS  PubMed  Google Scholar 

  23. Platanias LC (2005) Mechanisms of type-I- and type-II-interferon-mediated signalling. Nat Rev Immunol 5:375–386. https://doi.org/10.1038/nri1604

    Article  CAS  PubMed  Google Scholar 

  24. Briukhovetska D, Dörr J, Endres S et al (2021) Interleukins in cancer: from biology to therapy. Nat Rev Cancer 21:481–499. https://doi.org/10.1038/s41568-021-00363-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Jebreel A, Mistry D, Loke D et al (2007) Investigation of interleukin 10, 12 and 18 levels in patients with head and neck cancer. J Laryngol Otol 121:246–252. https://doi.org/10.1017/S0022215106002428

    Article  CAS  PubMed  Google Scholar 

  26. Tong M, Lloyd B, Pei P, Mallery SR (2008) Human head and neck squamous cell carcinoma cells are both targets and effectors for the angiogenic cytokine, VEGF. J Cell Biochem 105:1202–1210. https://doi.org/10.1002/jcb.21920

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Lin L-H, Lin J-S, Yang C-C et al (2020) Overexpression of platelet-derived growth factor and its receptor are correlated with oral tumorigenesis and poor prognosis in oral squamous cell carcinoma. Int J Mol Sci 21:2360. https://doi.org/10.3390/ijms21072360

    Article  CAS  PubMed Central  Google Scholar 

  28. Wang S, Cen X, Liang X, Tang Y (2016) Macrophage migration inhibitory factor: a potential driver and biomarker for head and neck squamous cell carcinoma. Oncotarget 8:10650–10661. https://doi.org/10.18632/oncotarget.12890

    Article  PubMed Central  Google Scholar 

  29. Landscape of transcription in human cells | Nature. https://www.nature.com/articles/nature11233. Accessed 24 Jul 2021

  30. Statello L, Guo C-J, Chen L-L, Huarte M (2021) Gene regulation by long non-coding RNAs and its biological functions. Nat Rev Mol Cell Biol 22:96–118. https://doi.org/10.1038/s41580-020-00315-9

    Article  CAS  PubMed  Google Scholar 

  31. Tripathi S, Shree B, Mohapatra S et al (2021) The expanding regulatory mechanisms and cellular functions of long non-coding RNAs (lncRNAs) in neuroinflammation. Mol Neurobiol 58:2916–2939. https://doi.org/10.1007/s12035-020-02268-8

    Article  CAS  PubMed  Google Scholar 

  32. Bartel DP (2018) Metazoan microRNAs. Cell 173:20–51. https://doi.org/10.1016/j.cell.2018.03.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Czech B, Munafò M, Ciabrelli F et al (2018) piRNA-guided genome defense: from biogenesis to silencing. Annu Rev Genet 52:131–157. https://doi.org/10.1146/annurev-genet-120417-031441

    Article  CAS  PubMed  Google Scholar 

  34. Salmena L, Poliseno L, Tay Y et al (2011) A ceRNA hypothesis: the Rosetta stone of a hidden RNA language? Cell 146:353–358. https://doi.org/10.1016/j.cell.2011.07.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Rinn JL, Chang HY (2020) Long noncoding RNAs: molecular modalities to organismal functions. Annu Rev Biochem 89:283–308. https://doi.org/10.1146/annurev-biochem-062917-012708

    Article  CAS  PubMed  Google Scholar 

  36. Kristensen LS, Andersen MS, Stagsted LVW et al (2019) The biogenesis, biology and characterization of circular RNAs. Nat Rev Genet 20:675–691. https://doi.org/10.1038/s41576-019-0158-7

    Article  CAS  PubMed  Google Scholar 

  37. Cheng D, Wang J, Dong Z, Li X (2021) Cancer-related circular RNA: diverse biological functions. Cancer Cell Int 21:11. https://doi.org/10.1186/s12935-020-01703-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Noncoding RNAs in Cancer Development | Annual Review of Cancer Biology. https://www.annualreviews.org/doi/abs/10.1146/annurev-cancerbio-050216-034443. Accessed 28 Jul 2021

  39. Momen-Heravi F, Bala S (2018) Emerging role of non-coding RNA in oral cancer. Cell Signal 42:134–143. https://doi.org/10.1016/j.cellsig.2017.10.009

    Article  CAS  PubMed  Google Scholar 

  40. Curry JM, Sprandio J, Cognetti D et al (2014) Tumor microenvironment in head and neck squamous cell carcinoma. Semin Oncol 41:217–234. https://doi.org/10.1053/j.seminoncol.2014.03.003

    Article  CAS  PubMed  Google Scholar 

  41. Douglas WG, Tracy E, Tan D et al (2004) Development of head and neck squamous cell carcinoma is associated with altered cytokine responsiveness. Mol Cancer Res MCR 2:585–593

    Article  CAS  PubMed  Google Scholar 

  42. Rapidis AD, Wolf GT (2009) Immunotherapy of head and neck cancer: current and future considerations. J Oncol 2009:346345. https://doi.org/10.1155/2009/346345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Berraondo P, Sanmamed MF, Ochoa MC et al (2019) Cytokines in clinical cancer immunotherapy. Br J Cancer 120:6–15. https://doi.org/10.1038/s41416-018-0328-y

    Article  CAS  PubMed  Google Scholar 

  44. Propper DJ, Balkwill FR (2022) Harnessing cytokines and chemokines for cancer therapy. Nat Rev Clin Oncol 19:237–253. https://doi.org/10.1038/s41571-021-00588-9

    Article  CAS  PubMed  Google Scholar 

  45. Liu L, Wang Q, Qiu Z et al (2020) Noncoding RNAs: the shot callers in tumor immune escape. Signal Transduct Target Ther 5:1–24. https://doi.org/10.1038/s41392-020-0194-y

    Article  CAS  Google Scholar 

  46. Mollica Poeta V, Massara M, Capucetti A, Bonecchi R (2019) Chemokines and chemokine receptors: new targets for cancer immunotherapy. Front Immunol. https://doi.org/10.3389/fimmu.2019.00379

    Article  PubMed  PubMed Central  Google Scholar 

  47. Arun G, Diermeier SD, Spector DL (2018) Therapeutic targeting of long non-coding RNAs in cancer. Trends Mol Med 24:257–277. https://doi.org/10.1016/j.molmed.2018.01.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Carpenter S, Fitzgerald KA (2018) Cytokines and long noncoding RNAs. Cold Spring Harb Perspect Biol 10:a028589. https://doi.org/10.1101/cshperspect.a028589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Papoutsoglou P, Moustakas A (2020) Long non-coding RNAs and TGF-β signaling in cancer. Cancer Sci 111:2672–2681. https://doi.org/10.1111/cas.14509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Jiang M-C, Ni J-J, Cui W-Y et al (2019) Emerging roles of lncRNA in cancer and therapeutic opportunities. Am J Cancer Res 9:1354–1366

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Li M, Ding X, Zhang Y et al (2020) Antisense oligonucleotides targeting lncRNA AC104041.1 induces antitumor activity through Wnt2B/β-catenin pathway in head and neck squamous cell carcinomas. Cell Death Dis 11:1–12. https://doi.org/10.1038/s41419-020-02820-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. TGF-? regulates the ERK/MAPK pathway independent of the SMAD pathway by repressing miRNA-124 to increase MALAT1 expression in nasopharyngeal carcinoma - PubMed. https://pubmed.ncbi.nlm.nih.gov/29710466/. Accessed 9 Dec 2021

  53. Zhang T-H, Liang L-Z, Liu X-L et al (2019) LncRNA UCA1/miR-124 axis modulates TGFβ1-induced epithelial-mesenchymal transition and invasion of tongue cancer cells through JAG1/Notch signaling. J Cell Biochem 120:10495–10504. https://doi.org/10.1002/jcb.28334

    Article  CAS  PubMed  Google Scholar 

  54. Yokoyama S, Shigeishi H, Murodumi H et al (2021) TGF-β1 induces amoeboid-to-mesenchymal transition of CD44high oral squamous cell carcinoma cells via miR-422a downregulation through ERK activation and Cofilin-1 phosphorylation. J Oral Pathol Med 50:155–164. https://doi.org/10.1111/jop.13113

    Article  CAS  PubMed  Google Scholar 

  55. Lin Z, Sun L, Chen W et al (2014) miR-639 regulates transforming growth factor beta-induced epithelial–mesenchymal transition in human tongue cancer cells by targeting FOXC1. Cancer Sci 105:1288–1298. https://doi.org/10.1111/cas.12499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Cheng C-M, Shiah S-G, Huang C-C et al (2016) Up-regulation of miR-455-5p by the TGF-β–SMAD signalling axis promotes the proliferation of oral squamous cancer cells by targeting UBE2B. J Pathol 240:38–49. https://doi.org/10.1002/path.4752

    Article  CAS  PubMed  Google Scholar 

  57. You X, Zhou Z, Chen W et al (2020) MicroRNA-495 confers inhibitory effects on cancer stem cells in oral squamous cell carcinoma through the HOXC6-mediated TGF-β signaling pathway. Stem Cell Res Ther. https://doi.org/10.1186/s13287-020-1576-3

    Article  PubMed  PubMed Central  Google Scholar 

  58. Chen L, Sun D-Z, Fu Y-G et al (2020) Upregulation of microRNA-141 suppresses epithelial-mesenchymal transition and lymph node metastasis in laryngeal cancer through HOXC6-dependent TGF-β signaling pathway. Cell Signal 66:109444. https://doi.org/10.1016/j.cellsig.2019.109444

    Article  CAS  PubMed  Google Scholar 

  59. Wang Y, Jiang Y, Chen L (2020) Role of miR-218-GREM1 axis in epithelial-mesenchymal transition of oral squamous cell carcinoma: an in vivo and vitro study based on microarray data. J Cell Mol Med 24:13824–13836. https://doi.org/10.1111/jcmm.15972

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Chu T-H, Yang C-C, Liu C-J et al (2013) MiR-211 promotes the progression of head and neck carcinomas by targeting TGFβRII. Cancer Lett. https://doi.org/10.1016/j.canlet.2013.05.032

    Article  PubMed  Google Scholar 

  61. Wang Y, Wu C, Zhang C et al (2018) TGF-β-induced STAT3 overexpression promotes human head and neck squamous cell carcinoma invasion and metastasis through malat1/miR-30a interactions. Cancer Lett 436:52–62. https://doi.org/10.1016/j.canlet.2018.08.009

    Article  CAS  PubMed  Google Scholar 

  62. Cui W, Meng W, Zhao L et al (2019) TGF-β-induced long non-coding RNA MIR155HG promotes the progression and EMT of laryngeal squamous cell carcinoma by regulating the miR-155-5p/SOX10 axis. Int J Oncol 54:2005–2018. https://doi.org/10.3892/ijo.2019.4784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Shen H, Sun B, Yang Y et al (2020) MIR4435-2HG regulates cancer cell behaviors in oral squamous cell carcinoma cell growth by upregulating TGF-β1. Odontology 108:553–559. https://doi.org/10.1007/s10266-020-00488-x

    Article  CAS  PubMed  Google Scholar 

  64. Huang T, Huang W, Lu H et al (2018) Identification and validation a TGF-β-associated long non-coding RNA of head and neck squamous cell carcinoma by bioinformatics method. J Transl Med 16:46. https://doi.org/10.1186/s12967-018-1418-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Zhang P, Liu Y, Li C et al (2019) LncRNA PAPAS promotes oral squamous cell carcinoma by upregulating transforming growth factor-β1. J Cell Biochem 120:16120–16127. https://doi.org/10.1002/jcb.28893

    Article  CAS  PubMed  Google Scholar 

  66. Liang K, Yang Y, Zha D et al (2019) Overexpression of lncRNA snaR is correlated with progression and predicts poor survival of laryngeal squamous cell carcinoma. J Cell Biochem 120:8492–8498. https://doi.org/10.1002/jcb.28136

    Article  CAS  Google Scholar 

  67. Zhou B, Zhou Y, Liu Y et al (2021) Association of CASC18/miR-20a-3p/TGFB2 ceRNA axis with occult lymph node metastasis in tongue squamous cell carcinoma. Mol Med 27:1–13. https://doi.org/10.1186/s10020-021-00345-9

    Article  CAS  Google Scholar 

  68. Full article: Regulation of transforming growth factor-beta1 by circANKS1B/miR-515–5p affects the metastatic potential and cisplatin resistance in oral squamous cell carcinoma. https://www.tandfonline.com/doi/full/10.1080/21655979.2021.2005221. Accessed 9 Dec 2021

  69. Andersson B-Å, Lewin F, Lundgren J et al (2014) Plasma tumor necrosis factor-α and C-reactive protein as biomarker for survival in head and neck squamous cell carcinoma. J Cancer Res Clin Oncol 140:515–519. https://doi.org/10.1007/s00432-014-1592-8

    Article  CAS  PubMed  Google Scholar 

  70. Ew H, Sg S, Hy P et al (2019) TNF-α-induced miR-450a mediates TMEM182 expression to promote oral squamous cell carcinoma motility. PLoS ONE. https://doi.org/10.1371/journal.pone.0213463

    Article  Google Scholar 

  71. Hong HS, Akhavan J, Lee SH et al (2020) Proinflammatory cytokine TNFα promotes HPV-associated oral carcinogenesis by increasing cancer stemness. Int J Oral Sci 12:1–10. https://doi.org/10.1038/s41368-019-0069-7

    Article  CAS  Google Scholar 

  72. Zheng Z, Luan X, Zha J et al (2017) TNF-α inhibits the migration of oral squamous cancer cells mediated by miR-765-EMP3-p66Shc axis. Cell Signal 34:102–109. https://doi.org/10.1016/j.cellsig.2017.03.009

    Article  CAS  PubMed  Google Scholar 

  73. Wang L, Wei Y, Yan Y et al (2018) CircDOCK1 suppresses cell apoptosis via inhibition of miR-196a-5p by targeting BIRC3 in OSCC. Oncol Rep 39:951–966. https://doi.org/10.3892/or.2017.6174

    Article  CAS  PubMed  Google Scholar 

  74. Ferrari E, Pezzi ME, Cassi D et al (2021) Salivary cytokines as biomarkers for oral squamous cell carcinoma: a systematic review. Int J Mol Sci 22:6795. https://doi.org/10.3390/ijms22136795

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Interleukin-17A promotes tongue squamous cell carcinoma metastasis through activating miR-23b/versican pathway | Oncotarget. https://www.oncotarget.com/article/14255/text/. Accessed 23 Jul 2021

  76. Yu C-C, Tsai L-L, Wang M-L et al (2013) miR145 targets the SOX9/ADAM17 axis to inhibit tumor-initiating cells and IL-6–mediated paracrine effects in head and neck cancer. Cancer Res 73:3425–3440. https://doi.org/10.1158/0008-5472.CAN-12-3840

    Article  CAS  PubMed  Google Scholar 

  77. Zhou X, Ren Y, Liu A et al (2014) STAT3 inhibitor WP1066 attenuates miRNA-21 to suppress human oral squamous cell carcinoma growth in vitro and in vivo. Oncol Rep 31:2173–2180. https://doi.org/10.3892/or.2014.3114

    Article  CAS  PubMed  Google Scholar 

  78. Zhang X, Yang J, Bian Z et al (2019) Long noncoding RNA DANCR promotes nasopharyngeal carcinoma progression by interacting with STAT3, enhancing IL-6/JAK1/STAT3 signaling. Biomed Pharmacother 113:108713. https://doi.org/10.1016/j.biopha.2019.108713

    Article  CAS  PubMed  Google Scholar 

  79. Kong Y-G, Cui M, Chen S-M et al (2018) LncRNA-LINC00460 facilitates nasopharyngeal carcinoma tumorigenesis through sponging miR-149-5p to up-regulate IL6. Gene 639:77–84. https://doi.org/10.1016/j.gene.2017.10.006

    Article  CAS  PubMed  Google Scholar 

  80. Ding L, Ren J, Zhang D et al (2018) A novel stromal lncRNA signature reprograms fibroblasts to promote the growth of oral squamous cell carcinoma via LncRNA-CAF/interleukin-33. Carcinogenesis 39:397–406. https://doi.org/10.1093/carcin/bgy006

    Article  CAS  PubMed  Google Scholar 

  81. Puram SV, Tirosh I, Parikh AS et al (2017) Single-cell transcriptomic analysis of primary and metastatic tumor ecosystems in head and neck cancer. Cell 171:1611-1624.e24. https://doi.org/10.1016/j.cell.2017.10.044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Chen S-F, Nieh S, Jao S-W et al (2013) The paracrine effect of cancer-associated fibroblast-induced interleukin-33 regulates the invasiveness of head and neck squamous cell carcinoma. J Pathol 231:180–189. https://doi.org/10.1002/path.4226

    Article  CAS  PubMed  Google Scholar 

  83. Lin Y-C, Huang W-Y, Lee T-Y et al (2021) Interleukin-33-enhanced CXCR4 signaling circuit mediated by carcinoma-associated fibroblasts promotes invasiveness of head and neck cancer. Cancers 13:3442. https://doi.org/10.3390/cancers13143442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Wang X, Wang C, Xu H, Xie H (2020) <p>Long non-coding RNA SLC25A21-AS1 promotes multidrug resistance in nasopharyngeal carcinoma by regulating miR-324-3p/IL-6 axis</p>. Cancer Manag Res 12:3949–3957. https://doi.org/10.2147/CMAR.S251820

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Wolff HA, Rolke D, Rave-Fränk M et al (2011) Analysis of chemokine and chemokine receptor expression in squamous cell carcinoma of the head and neck (SCCHN) cell lines. Radiat Environ Biophys 50:145–154. https://doi.org/10.1007/s00411-010-0341-x

    Article  CAS  PubMed  Google Scholar 

  86. Kong F, He S, Shen X et al (2020) Integrated analysis of different mRNA and miRNA profiles in human hypopharyngeal squamous cell carcinoma sensitive and resistant to chemotherapy. Neoplasma 67:473–483. https://doi.org/10.4149/neo_2020_190320N249

    Article  CAS  PubMed  Google Scholar 

  87. Peng C-Y, Wang T-Y, Lee S-S et al (2018) Let-7c restores radiosensitivity and chemosensitivity and impairs stemness in oral cancer cells through inhibiting interleukin-8. J Oral Pathol Med 47:590–597. https://doi.org/10.1111/jop.12711

    Article  CAS  PubMed  Google Scholar 

  88. Li X, Fan Q, Li J et al (2017) MiR-124 down-regulation is critical for cancer associated fibroblasts-enhanced tumor growth of oral carcinoma. Exp Cell Res 351:100–108. https://doi.org/10.1016/j.yexcr.2017.01.001

    Article  CAS  PubMed  Google Scholar 

  89. Peng H-Y, Jiang S-S, Hsiao J-R et al (2016) IL-8 induces miR-424-5p expression and modulates SOCS2/STAT5 signaling pathway in oral squamous cell carcinoma. Mol Oncol 10:895–909. https://doi.org/10.1016/j.molonc.2016.03.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Qu J-Q, Yi H-M, Ye X et al (2015) MiR-23a sensitizes nasopharyngeal carcinoma to irradiation by targeting IL-8/Stat3 pathway. Oncotarget 6:28341–28356. https://doi.org/10.18632/oncotarget.5117

    Article  PubMed  Google Scholar 

  91. MiRNA-203 reduces nasopharyngeal carcinoma radioresistance by targeting IL8/AKT signaling | Molecular Cancer Therapeutics. https://mct.aacrjournals.org/content/14/11/2653.long. Accessed 23 Jul 2021

  92. Xu Y-X, Sun J, Xiao W-L, et al (2019) MiR-4513 mediates the proliferation and apoptosis of oral squamous cell carcinoma cells via targeting CXCL17. Eur Rev Med Pharmacol Sci 23:3821–3828. https://doi.org/10.26355/eurrev_201905_17809

  93. Yang C-N, Deng Y-T, Tang J-Y et al (2015) MicroRNA-29b regulates migration in oral squamous cell carcinoma and its clinical significance. Oral Oncol 51:170–177. https://doi.org/10.1016/j.oraloncology.2014.10.017

    Article  CAS  PubMed  Google Scholar 

  94. Jiang X, Liu J, Li S et al (2020) CCL18-induced LINC00319 promotes proliferation and metastasis in oral squamous cell carcinoma via the miR-199a-5p/FZD4 axis. Cell Death Dis 11:1–13. https://doi.org/10.1038/s41419-020-02978-w

    Article  CAS  Google Scholar 

  95. Wei H, Liu D, Sun J et al (2019) Circular RNA circ_0008450 upregulates CXCL9 expression by targeting miR-577 to regulate cell proliferation and invasion in nasopharyngeal carcinoma. Exp Mol Pathol 110:104288. https://doi.org/10.1016/j.yexmp.2019.104288

    Article  CAS  PubMed  Google Scholar 

  96. Wu H, Pang P, Liu M-D et al (2018) Upregulated miR-20a-5p expression promotes proliferation and invasion of head and neck squamous cell carcinoma cells by targeting of TNFRSF21. Oncol Rep 40:1138–1146. https://doi.org/10.3892/or.2018.6477

    Article  CAS  PubMed  Google Scholar 

  97. Liu M-D, Wu H, Wang S et al (2018) MiR-1275 promotes cell migration, invasion and proliferation in squamous cell carcinoma of head and neck via up-regulating IGF-1R and CCR7. Gene 646:1–7. https://doi.org/10.1016/j.gene.2017.12.049

    Article  CAS  PubMed  Google Scholar 

  98. Hui Y, Li Y, Jing Y, et al (2016) miRNA-101 acts as a tumor suppressor in oral squamous cell carcinoma by targeting CX chemokine receptor 7. Am J Transl Res 8:4902–4911

  99. Yu T, Liu K, Wu Y et al (2014) MicroRNA-9 inhibits the proliferation of oral squamous cell carcinoma cells by suppressing expression of CXCR4 via the Wnt/β-catenin signaling pathway. Oncogene 33:5017–5027. https://doi.org/10.1038/onc.2013.448

    Article  CAS  PubMed  Google Scholar 

  100. Luo H-N, Wang Z-H, Sheng Y et al (2013) miR-139 targets CXCR4 and inhibits the proliferation and metastasis of laryngeal squamous carcinoma cells. Med Oncol 31:789. https://doi.org/10.1007/s12032-013-0789-z

    Article  CAS  PubMed  Google Scholar 

  101. Zhang K, Zhou H, Yan B, Cao X (2020) TUG1/miR-133b/CXCR4 axis regulates cisplatin resistance in human tongue squamous cell carcinoma. Cancer Cell Int 20:148. https://doi.org/10.1186/s12935-020-01224-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Zhao J, Li X-D, Wang M et al (2021) Circular RNA ABCB10 contributes to laryngeal squamous cell carcinoma (LSCC) progression by modulating the miR-588/CXCR4 axis. Aging 13:14078–14087. https://doi.org/10.18632/aging.203025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Shibuya M (2013) Vascular endothelial growth factor and its receptor system: physiological functions in angiogenesis and pathological roles in various diseases. J Biochem (Tokyo) 153:13–19. https://doi.org/10.1093/jb/mvs136

    Article  CAS  Google Scholar 

  104. Chen J, Lu F, Hu C (2019) MicroRNA-299 targets VEGFA and inhibits the growth, chemosensitivity and invasion of human nasopharyngeal carcinoma cells. J BUON 24:2049–2055

    PubMed  Google Scholar 

  105. Sasahira T, Kurihara M, Bhawal UK et al (2012) Downregulation of miR-126 induces angiogenesis and lymphangiogenesis by activation of VEGF-A in oral cancer. Br J Cancer 107:700–706. https://doi.org/10.1038/bjc.2012.330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Shi Q, Dai J, Huang L (2019) microRNA-29a functions as a tumor suppressor in nasopharyngeal carcinoma 5–8F cells through targeting VEGF. Iran J Basic Med Sci 22:541–546. https://doi.org/10.22038/ijbms.2019.33818.8049

    Article  PubMed  PubMed Central  Google Scholar 

  107. Zhang T, Liu M, Wang C et al (2011) Down-regulation of MiR-206 promotes proliferation and invasion of laryngeal cancer by regulating VEGF expression. Anticancer Res 31:3859–3863

    CAS  PubMed  Google Scholar 

  108. Hung P-S, Tu H-F, Kao S-Y et al (2014) miR-31 is upregulated in oral premalignant epithelium and contributes to the immortalization of normal oral keratinocytes. Carcinogenesis 35:1162–1171. https://doi.org/10.1093/carcin/bgu024

    Article  CAS  PubMed  Google Scholar 

  109. Kumar B, Yadav A, Lang J et al (2012) Dysregulation of microRNA-34a expression in head and neck squamous cell carcinoma promotes tumor growth and tumor angiogenesis. PLoS ONE 7:e37601. https://doi.org/10.1371/journal.pone.0037601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Fu W, Lu Y, Hu B et al (2015) Long noncoding RNA Hotair mediated angiogenesis in nasopharyngeal carcinoma by direct and indirect signaling pathways. Oncotarget 7:4712–4723. https://doi.org/10.18632/oncotarget.6731

    Article  PubMed Central  Google Scholar 

  111. Zhang C-Z (2017) Long intergenic non-coding RNA 668 regulates VEGFA signaling through inhibition of miR-297 in oral squamous cell carcinoma. Biochem Biophys Res Commun 489:404–412. https://doi.org/10.1016/j.bbrc.2017.05.155

    Article  CAS  PubMed  Google Scholar 

  112. He K, Zhu Z-B, Shu R, Hong A (2020) LncRNA NEAT1 mediates progression of oral squamous cell carcinoma via VEGF-A and Notch signaling pathway. World J Surg Oncol 18:261. https://doi.org/10.1186/s12957-020-02028-x

    Article  PubMed  Google Scholar 

  113. Lu H, Kang F (2020) Down-regulating NEAT1 inhibited the viability and vasculogenic mimicry formation of sinonasal squamous cell carcinoma cells via miR-195-5p/VEGFA axis. Biosci Rep. https://doi.org/10.1042/BSR20201373

  114. Cao Z-H, Cheng J-L, Zhang Y et al (2017) MicroRNA-375 inhibits oral squamous cell carcinoma cell migration and invasion by targeting platelet-derived growth factor-A. Mol Med Rep 15:922–928. https://doi.org/10.3892/mmr.2016.6057

    Article  CAS  PubMed  Google Scholar 

  115. Chen L, Zhou H, Guan Z (2019) CircRNA_000543 knockdown sensitizes nasopharyngeal carcinoma to irradiation by targeting miR-9/platelet-derived growth factor receptor B axis. Biochem Biophys Res Commun 512:786–792. https://doi.org/10.1016/j.bbrc.2019.03.126

    Article  CAS  PubMed  Google Scholar 

  116. Liu N, Jiang N, Guo R et al (2013) MiR-451 inhibits cell growth and invasion by targeting MIF and is associated with survival in nasopharyngeal carcinoma. Mol Cancer 12:123. https://doi.org/10.1186/1476-4598-12-123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Ma H, Chang H, Yang W et al (2020) A novel IFNα-induced long noncoding RNA negatively regulates immunosuppression by interrupting H3K27 acetylation in head and neck squamous cell carcinoma. Mol Cancer. https://doi.org/10.1186/s12943-019-1123-y

    Article  PubMed  PubMed Central  Google Scholar 

  118. Thierauf J, Veit JA, Hess J (2017) Epithelial-to-mesenchymal transition in the pathogenesis and therapy of head and neck cancer. Cancers 9:76. https://doi.org/10.3390/cancers9070076

    Article  CAS  PubMed Central  Google Scholar 

  119. Wang Y, Wang S, Ren Y, Zhou X (2020) The role of lncRNA crosstalk in leading cancer metastasis of head and neck squamous cell carcinoma. Front Oncol 10:561833. https://doi.org/10.3389/fonc.2020.561833

    Article  PubMed  PubMed Central  Google Scholar 

  120. Suarez-Carmona M, Lesage J, Cataldo D, Gilles C (2017) EMT and inflammation: inseparable actors of cancer progression. Mol Oncol 11:805–823. https://doi.org/10.1002/1878-0261.12095

    Article  PubMed  PubMed Central  Google Scholar 

  121. Lin C-W, Lin P-Y, Yang P-C (2016) Noncoding RNAs in tumor epithelial-to-mesenchymal transition. Stem Cells Int 2016:e2732705. https://doi.org/10.1155/2016/2732705

    Article  CAS  Google Scholar 

Download references

Funding

Oral cancer research in VS lab is supported by funding from OPERA and CHDR Grants from BITS Pilani-Hyderabad Campus and ICMR Grant Number 2021-10878. Swati is supported by the DST Inspire fellowship (Registration no. IF190343).

Author information

Authors and Affiliations

Authors

Contributions

VS conceived and designed the manuscript. S and VS wrote the manuscript. All authors have critically reviewed the manuscript and approved the final version of the manuscript.

Corresponding author

Correspondence to Vivek Sharma.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

Not required.

Research involving human and/or animal participants

This article does not contain any studies with animal or human participants.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Swati, Sharma, V. The interplay of cytokine signaling and non-coding RNAs in head and neck squamous cell carcinoma pathobiology. Mol Biol Rep 49, 10825–10847 (2022). https://doi.org/10.1007/s11033-022-07770-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-022-07770-x

Keywords

Navigation