Skip to main content
Log in

Opportunities and obstacles for the melanoma immunotherapy using T cell and chimeric antigen receptor T (CAR-T) applications: a literature review

  • Review
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Chimeric antigen receptor T (CAR-T) cell therapy procedure includes taking personal T cells and processing or genetic engineering using specific antigens and in vitro expanding and eventually infusing into the patient’s body to unleash immune responses. Adoptive cell therapy (ACT) includes lymphocytes taking, in vitro selection and expansion and processing for stimulation or activation and infusion into the patient’s body. Immune checkpoint inhibitors (ICIs), ACT and CAR-T cell therapies have demonstrated acceptable results. However, rare CAR-T cells tissue infiltration, off-target toxicity and resistance development include main disadvantages of CAR-T cell based therapy. Selection of suitable target antigens and novel engineered immune cells are warranted in future studies using “surfaceome” analysis. Employment of cytokines (IL-2, IL-7) for T cells activation has been also associated with specific anti-melanoma function which overcome telomeres shortening and further T cells differentiation. In resistant cases, rapidly accelerated fibrosarcoma B-type and mitogen-activated extracellular signal-regulated kinase inhibitors have been mostly applied. The aim of this study was evaluation of CAR-T cell and adoptive cell therapies efficiency for the treatment of melanoma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

CAR-T cell:

Chimeric antigen receptor T cell

ICIs:

Immune checkpoint inhibitors

ACT:

Adoptive cell therapy

BRAF:

Rapidly accelerated fibrosarcoma B-type

MEK:

Mitogen-activated extracellular signal-regulated kinase

FDA:

Food and drug administration

CTLA-4:

Cytotoxic T-lymphocyte-associated protein 4

MADAs:

Multiple antigen delivery approaches

PD-1:

Anti-programmed cell death 1

LAG-3:

Lymphocyte activation gene-3

CVA21:

Oncolytic cold virus

T-VEC:

Talimogene laherparepvec herpes virus

IFN-α:

Interferon-α

IL:

Interleukin

DCs:

Dendritic cells

TME:

Tumor microenvironment

IDO1:

Indoleamine 2,3-dioxygenase

LAG3:

Lymphocyte-activation gene 3

TNF:

Tumor necrosis factor

SALT:

Skin-associated lymphoid tissue

MHC:

Major histocompatibility complex

NK:

Natural killer

APCs:

Antigen-presenting cells

TLSs:

Tertiary lymphoid structures

SK1:

Sphingosine kinase-1

TIL:

Tumor-infiltrating lymphocytes

siRNA:

Small interfering RNA

IGF-1:

Insulin-like growth factor 1

TRAIL:

TNF-related apoptosis-inducing ligand

CRISPR:

Clustered regularly interspaced short palindromic repeats

CSPG4:

Chondroitin sulfate proteoglycan 4

OV:

Oncolytic virus

References

  1. Lugowska I, Teterycz P, Rutkowski P (2018) Immunotherapy of melanoma. Contempor Oncol 22(1A):61

    Google Scholar 

  2. Weiss SA, Wolchok JD, Sznol M (2019) Immunotherapy of melanoma: facts and hopes. Clin Cancer Res 25(17):5191–5201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Franklin C, Livingstone E, Roesch A, Schilling B, Schadendorf D (2017) Immunotherapy in melanoma: recent advances and future directions. Europ J Surg Oncol 43(3):604–611

    Article  CAS  Google Scholar 

  4. Redman JM, Gibney GT, Atkins MB (2016) Advances in immunotherapy for melanoma. BMC Med 14(1):1–1

    Article  Google Scholar 

  5. Achkar T, Tarhini AA (2017) The use of immunotherapy in the treatment of melanoma. J Hematol Oncol 10(1):1–9

    Article  Google Scholar 

  6. Kim G, McKee AE, Ning YM, Hazarika M, Theoret M, Johnson JR, Xu QC, Tang S, Sridhara R, Jiang X, He K (2014) FDA approval summary: vemurafenib for treatment of unresectable or metastatic melanoma with the BRAFV600E mutation. Clin Cancer Res 20(19):4994–5000

    Article  CAS  PubMed  Google Scholar 

  7. Chuk MK, Chang JT, Theoret MR, Sampene E, He K, Weis SL, Helms WS, Jin R, Li H, Yu J, Zhao H (2017) FDA approval summary: accelerated approval of pembrolizumab for second-line treatment of metastatic melanoma. Clin Cancer Res 23(19):5666–5670

    Article  CAS  PubMed  Google Scholar 

  8. Ackerman A, Klein O, McDermott DF, Wang W, Ibrahim N, Lawrence DP, Gunturi A, Flaherty KT, Hodi FS, Kefford R, Menzies AM (2014) Outcomes of patients with metastatic melanoma treated with immunotherapy prior to or after BRAF inhibitors. Cancer 120(11):1695–1701

    Article  CAS  PubMed  Google Scholar 

  9. Zhu Z, Liu W, Gotlieb V (2016) The rapidly evolving therapies for advanced melanoma—towards immunotherapy, molecular targeted therapy, and beyond. Crit Rev Oncol Hematol 99:91–99

    Article  PubMed  Google Scholar 

  10. Sanlorenzo M, Vujic I, Posch C, Dajee A, Yen A, Kim S, Ashworth M, Rosenblum MD, Algazi A, Osella-Abate S, Quaglino P (2014) Melanoma immunotherapy. Cancer Biol Ther 15(6):665–674

    Article  PubMed  PubMed Central  Google Scholar 

  11. Hei Y, Chen Y, Li Q, Mei Z, Pan J, Zhang S, Xiong C, Su X, Wei S (2022) Multifunctional immunoliposomes enhance the immunotherapeutic effects of PD-L1 antibodies against melanoma by reprogramming immunosuppressive. Tumor Microenviron Small 18(9):2105118

    Google Scholar 

  12. Eggermont AM, Crittenden M, Wargo J (2018) Combination immunotherapy development in melanoma. Amer Soc Clin Oncol 38:197–207

    Google Scholar 

  13. Yu C, Liu X, Yang J, Zhang M, Jin H, Ma X, Shi H (2019) Combination of immunotherapy with targeted therapy: theory and practice in metastatic melanoma. Front Immunol 10:990

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ferrer G, Álvarez-Errico D, Esteller M (2022) Biological and molecular factors predicting response to adoptive cell therapies in cancer. J Nat Cancer Inst. https://doi.org/10.1093/jnci/djac088

    Article  PubMed  PubMed Central  Google Scholar 

  15. Granhøj JS, Witness Præst Jensen A, Presti M, Met Ö, Svane IM, Donia M (2022) Tumor-infiltrating lymphocytes for adoptive cell therapy: recent advances, challenges, and future directions. Expert Opin Biol Ther. https://doi.org/10.1080/14712598.2022.2064711

    Article  PubMed  Google Scholar 

  16. Evgin L, Kottke T, Tonne J, Thompson J, Huff AL, van Vloten J, Moore M, Michael J, Driscoll C, Pulido J, Swanson E (2022) Oncolytic virus–mediated expansion of dual-specific CAR T cells improves efficacy against solid tumors in mice. Sci Trans Med 14(640):eabn2231

    Article  CAS  Google Scholar 

  17. Li H, Wang Z, Ogunnaike EA, Wu Q, Chen G, Hu Q, Ci T, Chen Z, Wang J, Wen D, Du H (2022) Scattered seeding of CAR T cells in solid tumors augments anticancer efficacy. Natl Sci Rev 9(3):nwab172

    Article  CAS  PubMed  Google Scholar 

  18. Zheng X, Zhang J, Li S, Gao X, Zhang Y, Wang M, Dong L, Sun L, Zhao N, Ma Z, Ding C (2022) Low doses of niclosamide and quinacrine combination yields synergistic effect in melanoma via activating autophagy-mediated p53-dependent apoptosis. Translat Oncol 21:101425

    Article  CAS  Google Scholar 

  19. Garofalo M, Bertinato L, Staniszewska M, Wieczorek M, Salmaso S, Schrom S, Rinner B, Pancer KW, Kuryk L (2021) Combination therapy of novel oncolytic adenovirus with anti-PD1 resulted in enhanced anti-cancer effect in syngeneic immunocompetent melanoma mouse model. Pharmaceutics 13(4):547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Liu Y, Zhang X, Wang G, Cui X (2021) Triple combination therapy with PD-1/PD-L1, BRAF, and MEK inhibitor for stage III–IV melanoma: a systematic review and meta-analysis. Front Oncol 11:2088

    Google Scholar 

  21. Lequeux A, Noman MZ, Xiao M, Van Moer K, Hasmim M, Benoit A, Bosseler M, Viry E, Arakelian T, Berchem G, Chouaib S (2021) Targeting HIF-1 alpha transcriptional activity drives cytotoxic immune effector cells into melanoma and improves combination immunotherapy. Oncogene 40(28):4725–4735

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Thomas D, Bello DM (2021) Adjuvant immunotherapy for melanoma. J Surg Oncol 123(3):789–797

    Article  CAS  PubMed  Google Scholar 

  23. Su Q, Wang C, Song H, Zhang C, Liu J, Huang P, Zhang Y, Zhang J, Wang W (2021) Co-delivery of anionic epitope/CpG vaccine and IDO inhibitor by self-assembled cationic liposomes for combination melanoma immunotherapy. J Mater Chem B 9(18):3892–3899

    Article  CAS  PubMed  Google Scholar 

  24. Gandhi S, Pandey MR, Attwood K, Ji W, Witkiewicz AK, Knudsen ES, Allen C, Tario JD, Wallace PK, Cedeno CD, Levis M (2021) Phase I clinical trial of combination propranolol and pembrolizumab in locally advanced and metastatic melanoma: safety, tolerability, and preliminary evidence of antitumor activity. Clin Cancer Res 27(1):87–95

    Article  CAS  PubMed  Google Scholar 

  25. Steininger J, Gellrich FF, Schulz A, Westphal D, Beissert S, Meier F (2021) Systemic therapy of metastatic melanoma: on the road to cure. Cancers 13(6):1430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Pelster MS, Gruschkus SK, Bassett R, Gombos DS, Shephard M, Posada L, Glover MS, Simien R, Diab A, Hwu P, Carter BW (2021) Nivolumab and ipilimumab in metastatic uveal melanoma: results from a single-arm phase II study. J Clin Oncol 39(6):599–607

    Article  CAS  PubMed  Google Scholar 

  27. Dafni U, Michielin O, Lluesma SM, Tsourti Z, Polydoropoulou V, Karlis D, Besser MJ, Haanen J, Svane IM, Ohashi PS, Kammula US (2019) Efficacy of adoptive therapy with tumor-infiltrating lymphocytes and recombinant interleukin-2 in advanced cutaneous melanoma: a systematic review and meta-analysis. Ann Oncol 30(12):1902–1913

    Article  CAS  PubMed  Google Scholar 

  28. Mehta GU, Malekzadeh P, Shelton T, White DE, Butman JA, Yang JC, Kammula US, Goff SL, Rosenberg SA, Sherry RM (2018) Outcomes of adoptive cell transfer with tumor-infiltrating lymphocytes for metastatic melanoma patients with and without brain metastases. J Immunother (Hagerstown, 1997) 41(5):241

    CAS  Google Scholar 

  29. Hunder NN, Wallen H, Cao J, Hendricks DW, Reilly JZ, Rodmyre R, Jungbluth A, Gnjatic S, Thompson JA, Yee C (2008) Treatment of metastatic melanoma with autologous CD4 + T cells against NY-ESO-1. New Eng J Med 358(25):2698–2703

    Article  CAS  PubMed  Google Scholar 

  30. Togashi Y, Shitara K, Nishikawa H (2019) Regulatory T cells in cancer immunosuppression—implications for anticancer therapy. Nat Rev Clin Oncol 16(6):356–371

    Article  CAS  PubMed  Google Scholar 

  31. Bendickova K, Fric J (2020) Roles of IL-2 in bridging adaptive and innate immunity, and as a tool for cellular immunotherapy. J Leukoc Biol 108(1):427–437

    Article  CAS  PubMed  Google Scholar 

  32. Nguyen LT, Saibil SD, Sotov V, Le MX, Khoja L, Ghazarian D, Bonilla L, Majeed H, Hogg D, Joshua AM, Crump M (2019) Phase II clinical trial of adoptive cell therapy for patients with metastatic melanoma with autologous tumor-infiltrating lymphocytes and low-dose interleukin-2. Cancer Immunol Immunother 68(5):773–785

    Article  CAS  PubMed  Google Scholar 

  33. Roncati L, Palmieri B (2020) Adoptive cell transfer (ACT) of autologous tumor-infiltrating lymphocytes (TILs) to treat malignant melanoma: the dawn of a chimeric antigen receptor T (CAR‐T) cell therapy from autologous donor. Internat J Dermatol 59(7):763–769

    Article  CAS  Google Scholar 

  34. Ligtenberg MA, de Coaña YP, Shmushkovich T, Yoshimoto Y, Truxova I, Yang Y, Betancur-Boissel M, Eliseev AV, Wolfson AD, Kiessling R (2018) Self-delivering RNAi targeting PD-1 improves tumor-specific T cell functionality for adoptive cell therapy of malignant melanoma. Mol Ther 26(6):1482–1493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Mullinax JE, Hall M, Prabhakaran S, Weber J, Khushalani N, Eroglu Z, Brohl AS, Markowitz J, Royster E, Richards A, Stark V (2018) Combination of ipilimumab and adoptive cell therapy with tumor-infiltrating lymphocytes for patients with metastatic melanoma. Front Oncol 8:44

    Article  PubMed  PubMed Central  Google Scholar 

  36. White LG, Goy HE, Rose AJ, McLellan AD (2022) Controlling cell trafficking: addressing failures in CAR T and NK cell therapy of solid tumours. Cancers 14(4):978

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Wang SY, Moore TV, Dalheim AV, Scurti GM, Nishimura MI (2021) Melanoma reactive TCR-modified T cells generated without activation retain a less differentiated phenotype and mediate a superior in vivo response. Sci Rep 11(1):1–1

    Google Scholar 

  38. Simon B, Uslu U (2018) CAR-T cell therapy in melanoma: a future success story? Exp Dermatol 27(12):1315–1321

    Article  PubMed  Google Scholar 

  39. Soltantoyeh T, Akbari B, Karimi A, Mahmoodi Chalbatani G, Ghahri-Saremi N, Hadjati J, Hamblin MR, Mirzaei HR (2021) Chimeric antigen receptor (CAR) T cell therapy for metastatic melanoma: challenges and road ahead. Cells 10(6):1450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Forsberg EM, Lindberg MF, Jespersen H, Alsén S, Bagge RO, Donia M, Svane IM, Nilsson O, Ny L, Nilsson LM, Nilsson JA (2019) HER2 CAR-T cells eradicate uveal melanoma and T-cell therapy–resistant human melanoma in IL2 transgenic NOD/SCID IL2 receptor knockout mice. Cancer Res 79(5):899–904

    Article  CAS  PubMed  Google Scholar 

  41. Razavi A, Keshavarz-Fathi M, Pawelek J, Rezaei N (2021) Chimeric antigen receptor T-cell therapy for melanoma. Expert Rev Clin Immunol 17(3):209–223

    Article  CAS  PubMed  Google Scholar 

  42. Wiesinger M, März J, Kummer M, Schuler G, Dörrie J, Schuler-Thurner B, Schaft N (2019) Clinical-scale production of CAR-T cells for the treatment of melanoma patients by mRNA transfection of a CSPG4-specific CAR under full GMP compliance. Cancers 11(8):1198

    Article  CAS  PubMed Central  Google Scholar 

  43. Bommareddy PK, Zloza A, Rabkin SD, Kaufman HL (2019) Oncolytic virus immunotherapy induces immunogenic cell death and overcomes STING deficiency in melanoma. Oncoimmunol 8(7):e1591875

    Article  Google Scholar 

  44. Haitz K, Khosravi H, Lin JY, Menge T, Nambudiri VE (2020) Review of talimogene laherparepvec: a first-in-class oncolytic viral treatment of advanced melanoma. J Amer Acad Dermatol 83(1):189–196

    Article  Google Scholar 

  45. Lu YC, Parker LL, Lu T, Zheng Z, Toomey MA, White DE, Yao X, Li YF, Robbins PF, Feldman SA (2017) Treatment of patients with metastatic cancer using a major histocompatibility complex class II-restricted T-cell receptor targeting the cancer germline antigen MAGE-A3. J Clin Oncol 35:3322–3329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Morgan RA, Dudley ME, Wunderlich JR, Hughes MS, Yang JC, Sherry RM, Royal RE, Topalían SL, Kammula US, Restifo NP (2006) Cancer regression in patients after transfer of genetically engineered lymphocytes. Science 314:126–129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Robbins PF, Morgan RA, Feldman SA, Yang JC, Sherry RM, Dudley ME, Wunderlich JR, Nahvi AV, Helman LJ, Mackall CL (2011) Tumor regression in patients with metastatic synovial cell sarcoma and melanoma using genetically engineered lymphocytes reactive with NY-ESO-1. J Clin Oncol 29:917–924

    Article  PubMed  PubMed Central  Google Scholar 

  48. Klarquist J, Barfuss A, Kandala S, Reust MJ, Braun RK, Hu J, Dilling DF, McKee MD, Boissy RE, Love RB, Nishimura MI (2009) Melanoma-associated antigen expression in lymphangioleiomyomatosis renders tumor cells susceptible to cytotoxic T cells. The Amer J Pathol 175(6):2463–2472

    Article  CAS  Google Scholar 

  49. Filipazzi P, Pilla L, Mariani L, Patuzzo R, Castelli C, Camisaschi C, Maurichi A, Cova A, Rigamonti G, Giardino F, Di Florio A (2012) Limited induction of tumor cross-reactive T cells without a measurable clinical benefit in early melanoma patients vaccinated with human leukocyte antigen class I–modified peptides. Clin Cancer Res 18(23):6485–6496

    Article  CAS  PubMed  Google Scholar 

  50. Moreno V, Hernandez T, de Miguel M, Doger B, Calvo E (2021) Adoptive cell therapy for solid tumors: chimeric antigen receptor T cells and beyond. Curr Opin Pharmacol 59:70–84

    Article  CAS  PubMed  Google Scholar 

  51. Morgan RA, Chinnasamy N, Abate-Daga D, Gros A, Robbins PF, Zheng Z, Dudley ME, Feldman SA, Yang JC, Sherry RM (2013) Cancer regression and neurological toxicity following anti-MAGE-A3 TCR gene therapy. J Immunother 36:133–151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Sarnaik A, Khushalani NI, Chesney JA, Kluger HM, Curti BD, Lewis KD, Thomas SS, Whitman ED, Hamid O, Lutzky J (2019) Safety and efficacy of cryopreserved autologous tumor infiltrating lymphocyte therapy (LN-144, lifileucel) in advanced metastatic melanoma patients who progressed on multiple prior therapies including anti-PD-1. J Clin Oncol 37:2518

    Article  Google Scholar 

  53. Rosenberg SA, Yang JC, Sherry RM, Kammula US, Hughes MS, Phan GQ, Citrin DE, Restifo NP, Robbins PF, Wunderlich JR (2011) Durable complete responses in heavily pretreated patients with metastatic melanoma using T-cell transfer immunotherapy. Clin Cancer Res 17:4550–4557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Andersen R, Donia M, Ellebaek E, Borch TH, Kongsted P, Iversen TZ, Hölmich LR, Hendel HW, Met Ö, Andersen MH (2016) Long-lasting complete responses in patients with metastatic melanoma after adoptive cell therapy with tumor-infiltrating lymphocytes and an attenuated il2 regimen. Clin Cancer Res 22:3734–3745

    Article  CAS  PubMed  Google Scholar 

  55. Jayasooriya V, Ringwelski B, Dorsam G, Nawarathna D (2021) mRNA-based CAR T-cells manufactured by miniaturized two-step electroporation produce selective cytotoxicity toward target cancer cells. Lab Chip 21(19):3748–3761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Ye Z, Chen J, Zhao X, Li Y, Harmon J, Huang C, Chen J, Xu Q (2022) In vitro engineering chimeric antigen receptor macrophages and T cells by lipid nanoparticle-mediated mRNA delivery. ACS Biomater Sci Eng  8(2):722–733

    Article  CAS  PubMed  Google Scholar 

  57. Lana MG, Strauss BE (2020) Production of lentivirus for the establishment of CAR-T cells. Methods Mol Biol. https://doi.org/10.1007/978-1-0716-0146-4_4

    Article  PubMed  Google Scholar 

  58. Kennedy A, Cribbs AP (2016) Production and concentration of lentivirus for transduction of primary human T cells. In Lentiviral vectors and exosomes as gene and protein delivery tools. Humana Press, New York, pp 85–93

    Google Scholar 

  59. Du L, Nai Y, Shen M, Li T, Huang J, Han X, Wang W, Pang D, Jin A (2021) IL-21 Optimizes the CAR-T cell preparation through improving lentivirus mediated transfection efficiency of T cells and enhancing CAR-T cell cytotoxic activities. Front Mol Bio sci 8:500

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdolmajid Ghasemian.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest to disclose.

Ethical approval

This article does not contain any studies with animals/human participants performed by any of the authors.

Research involving human and animal participants

Not applicable.

Informed consent

Not applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bahmanyar, M., Vakil, M.K., Al-Awsi, G.R.L. et al. Opportunities and obstacles for the melanoma immunotherapy using T cell and chimeric antigen receptor T (CAR-T) applications: a literature review. Mol Biol Rep 49, 10627–10633 (2022). https://doi.org/10.1007/s11033-022-07633-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-022-07633-5

Keywords

Navigation