Skip to main content
Log in

Molecular cloning and expression patterns of a sex-biased transcriptional factor Foxl2 in the giant freshwater prawn (Macrobrachium rosenbergii)

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Backgroud

Macrobrachium rosenbergii is an economically important species that is widely cultivated in some Asian nations. Foxl2 is a transcriptional regulator of ovarian differentiation and development. The aim of this study was to study the bioinformatics features and expression patterns of M. rosenbergii Foxl2 (MrFoxl2).

Methods

In this study, all experimental animals were mature M. rosenbergii (9–12 cm) individuals. The foxl2 gene was identified and characterized in the genome of M. rosenbergii using molecular cloning, bioinformatic analysis, in situ hybridization, and quantitative analysis.

Results

The identified cDNA encoded a putative 489-amino-acid MrFoxl2 protein. Bioinformatics analysis revealed a low identity of MrFoxl2 to other crustacean orthologues. The closest phylogenetic relationship was to Foxl2 of Eriocheir sinensis. The result of in situ hybridization demonstrated that transcripts of MrFoxl2 in M. rosenbergii were identified in spermatocytes, oocytes, and secretory epithelial cells of the vas deferens. The result of q-PCR suggested that a high expression of MrFoxl2 was identified in the testis, vas deferens, and ovaries. During ovarian development, MrFoxl2 expression was the highest in stage I.

Conclusion

Our findings suggest that MrFoxl2 may play a role in gonadal development in both female and male M. rosenbergii.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

All datasets generated for this study are included in the manuscript.

Abbreviations

Foxl2:

Forkhead box l2

GnRH:

Gonadotropin-releasing hormone-like peptides

Igf3:

Insulin-like growth factor 3

Wnt4:

Wingless-type MMTV integration site family 4

ER:

Estrogen receptor

Hsd3β:

3β-hydroxysteroid dehydrogenase

Hsd17β:

17β-Hydroxysteroid dehydrogenase

Cyp11a1:

Cytochrome P450, family 11, subfamily a, polypeptide1

Cyp17:

Cytochrome P450 17-hydroxylase/lyase

Cyp19a1:

Cytochrome P450, family 19, subfamily a, polypeptide 1

Sox9:

SRY-box transcription factor 9

GIH:

Gonad-inhibiting hormone

VTG:

Vitellogenin

DSX:

Doublesex

RACE:

Rapid amplification of cDNA ends

ORF:

Open reading frame

References

  1. New MB, Nair CM (2012) Global scale of freshwater prawn farming. Aquac Res 43(7):960–969. https://doi.org/10.1111/j.1365-2109.2011.03008.x

    Article  Google Scholar 

  2. Ngernsoungnern A, Ngernsoungnern P, Kavanaugh S, Sower SA, Sobhon P, Sretarugsa P (2008) The identification and distribution of gonadotropin-releasing hormone-like peptides in the central nervous system and ovary of the giant freshwater prawn, Macrobrachium rosenbergii. Invert Neurosci 8:49–57. https://doi.org/10.1007/s10158-008-0067-5

    Article  CAS  PubMed  Google Scholar 

  3. Suwansa-ard S, Thongbuakaew T, Wang T, Zhao M, Elizur A, Hanna PJ (2015) In silico neuropeptidome of female Macrobrachium rosenbergii based on transcriptome and peptide mining of eyestalk, central nervous system and ovary. PLoS ONE 10(5):e0123848. https://doi.org/10.1371/journal.pone.0123848

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Saetan J, Napamanee K, Supawadee D, Phetcharat P, Thanapong K, Prasert S (2021) The oxytocin/vasopressin-like peptide receptor mRNA in the central nervous system and ovary of the blue swimming crab, Portunus pelagicus. Comp Biochem Physiol A Mol Integr Physiol 258:110983. https://doi.org/10.1016/j.cbpa.2021.110983

    Article  CAS  PubMed  Google Scholar 

  5. Girish BP, Swetha CH, Sreenivasula Reddy P (2015) Induction of ecdysteroidogenesis, methyl farnesoate synthesis and expression of ecdysteroid receptor and retinoid X receptor in the hepatopancreas and ovary of the giant mud crab, Scylla serrata by melatonin. Gen Comp Endocrinol 217–218:37–42. https://doi.org/10.1016/j.ygcen.2015.05.007

    Article  CAS  PubMed  Google Scholar 

  6. Tenugu S, Pranoty A, Mamta SK (2021) Development and organisation of gonadal steroidogenesis in bony fishes—a review. Aquac Fish 6:223–246. https://doi.org/10.1016/j.aaf.2020.09.004

    Article  Google Scholar 

  7. Afonso LO, Wassermann GJ, Terezinha de Oliveira R (2001) Sex reversal in Nile tilapia (Oreochromis niloticus) using a nonsteroidal aromatase inhibitor. J Exp Zool 290:177–181. https://doi.org/10.1002/jez.1047

    Article  CAS  PubMed  Google Scholar 

  8. Zhang XB, Li MR, Ma H, Liu XY, Shi HJ, Li MH, Wang DS (2017) Mutation of foxl2 or cyp19a1a results in female to male sex reversal in XX nile tilapia. Endocrinology 158:2634–2647. https://doi.org/10.1210/en.2017-00127

    Article  CAS  PubMed  Google Scholar 

  9. Sagi A, Ra’anan Z, Cohen D, Wax Y (1986) Production of Macrobrachium rosenbergii in monosex populations, yield characteristics under intensive monoculture conditions in cages. Aquac 51:265–275. https://doi.org/10.1016/0044-8486(86)90318-2

    Article  Google Scholar 

  10. Uhlenhaut NH, Jakob S, Anlag K, Eisenberger T, Sekido R, Kress J, Treier AC, Klugmann C, Klasen C, Holter NI (2009) Somatic sex reprogramming of adult ovaries to testes by FOXL2 ablation. Cell 139:1130–1142. https://doi.org/10.1016/j.cell.2009.11.021

    Article  CAS  PubMed  Google Scholar 

  11. Miller WR, Mullen P (1993) Factors influencing aromatase activity in the breast. J Steroid Biochem Mol Biol 44:597–604. https://doi.org/10.1016/0960-0760(93)90265-X

    Article  CAS  PubMed  Google Scholar 

  12. Guiguen Y, Fostier A, Piferrer F, Chang CF (2010) Ovarian aromatase and estrogens, A pivotal role for gonadal sex differentiation and sex change in fish. Gen Comp Endocrinol 165:352–366. https://doi.org/10.1016/j.ygcen.2009.03.002

    Article  CAS  PubMed  Google Scholar 

  13. Wang DS, Kobayashi T, Zhou LY, Paul-Prasanth B, Ijiri S, Sakai F, Okubo K, Morohashi KI, Nagahama Y (2007) Foxl2 up-regulates aromatase gene transcription in a female-specific manner by binding to the promoter as well as interacting with ad4 binding protein/steroidogenic factor 1. Mol Endocrinol 21:712–725. https://doi.org/10.1210/me.2006-0248

    Article  CAS  PubMed  Google Scholar 

  14. Vidal VP, Chaboissier MC, de Rooij DG, Schedl A (2001) Sox9 induces testis development in XX transgenic mice. Nat Genet 28:216–217. https://doi.org/10.1038/90046

    Article  CAS  PubMed  Google Scholar 

  15. Uda M, Ottolenghi C, Crisponi L, Garcia JE, Deiana M, Kimber W, Forabosco A, Cao A, Schlessinger D, Pilia G (2004) Foxl2 disruption causes mouse ovarian failure by pervasive blockage of follicle development. Hum Mol Genet 13:1171–1181. https://doi.org/10.1093/hmg/ddh124

    Article  CAS  PubMed  Google Scholar 

  16. Boulanger L, Pannetier M, Gall L, Bonnet AA, Elzaiat M, Bourhis DL, Daniel N, Richard C, Cotinot C, Ghyselinck NB, Pailhoux E (2014) FOXL2 Is a female sex-determining gene in the goat. Curr Biol 24:404–408. https://doi.org/10.1016/j.cub.2013.12.039

    Article  CAS  PubMed  Google Scholar 

  17. Liu H, Mu X, Gui L, Su ML, Li H, Zhang G, Liu ZH, Zhang JB (2015) Characterization and gonadal expression of FOXL2 relative to Cyp19a genes in spotted scat Scatophagus argus. Gene 561:6–14. https://doi.org/10.1016/j.gene.2014.12.060

    Article  CAS  PubMed  Google Scholar 

  18. Yang YJ, Wang Y, Li Z, Zhou L, Gui JF (2017) sequential, divergent, and cooperative requirements of Foxl2a and Foxl2b in ovary development and maintenance of zebrafish. Genetics 205:1551–1572. https://doi.org/10.1534/genetics.116.199133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Okada H, Hagihara S, Yamashita K, Ijiri S, Adachi S (2017) Expression pattern of foxl2 and dmrt1 in gonad of Amur sturgeon Acipenser schrenckii in relation to sex differentiation. Aquac 479:712–720. https://doi.org/10.1016/j.aquaculture.2017.07.020

    Article  CAS  Google Scholar 

  20. Nakamoto M, Shibata Y, Ohno K, Usami T, Kamei Y, Taniguchi Y, Todo T, Sakamoto T, Young G, Swanson P, Naruse K, Nagahama Y (2018) Ovarian aromatase loss-of-function mutant medaka undergo ovary degeneration and partial female-to-male sex reversal after puberty. Mol Cell Endocrinol 460:104–122. https://doi.org/10.1016/j.mce.2017.07.013

    Article  CAS  PubMed  Google Scholar 

  21. Dermauw W, Van Leeuwen T, Feyereisen R (2020) Diversity and evolution of the P450 family in arthropods. Insect Biochem Mol Biol 127:103490–103512. https://doi.org/10.1016/j.ibmb.2020.103490

    Article  CAS  PubMed  Google Scholar 

  22. Damrongphol P, Eangchuan N, Poolsanguan B (1991) Spawning cycle and oocyte maturation in laboratory-maintained giant freshwater prawns (Macrobrachium rosenbergii). Aquac 95:347–357. https://doi.org/10.1016/0044-8486(91)90099-S

    Article  Google Scholar 

  23. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410. https://doi.org/10.1016/S0022-2836(05)80360-2

    Article  CAS  PubMed  Google Scholar 

  24. Kumar S, Stecher G, Tamura K (2016) MEGA7, Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874. https://doi.org/10.1093/molbev/msw054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Tan KA, Li YH, Zhou M, Wang WM (2020) siRNA knockdown of MrIR induces sex reversal in Macrobrachium rosenbergii. Aquac 523:735172–735181. https://doi.org/10.1016/j.aquaculture.2020.735172

    Article  CAS  Google Scholar 

  26. Schmittgen TD, Livak KJ (2008) Analyzing real-time PCR data by the comparative CT method. Nat Protoc 3:1101–1108. https://doi.org/10.1038/nprot.2008.73

    Article  CAS  PubMed  Google Scholar 

  27. Wang G, Dong SS, Guo PF, Cui XY, Duan SH, Li JL (2020) Identification of Foxl2 in freshwater mussel Hyriopsis cumingii and its involvement in sex differentiation. Gene 754:144853–144861. https://doi.org/10.1016/j.gene.2020.144853

    Article  CAS  PubMed  Google Scholar 

  28. Beysen D, Moumné L, Veitia R, Peters H, Leroy BP, Paepe AD, Baere DE (2008) Missense mutations in the forkhead domain of FOXL2 lead to subcellular mislocalization, protein aggregation and impaired transactivation. Hum Mol Genet 17:2030–2038. https://doi.org/10.1093/hmg/ddn100

    Article  CAS  PubMed  Google Scholar 

  29. Hu Q, Guo W, Gao Y, Tang R, Li D (2014) Molecular cloning and analysis of gonadal expression of Foxl2 in the rice-field eel Monopterus albus. Sci Rep 4:6884–6890. https://doi.org/10.1038/srep06884

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Bhat IA, Rather MA, Dar JY, Sharma R (2016) Molecular cloning, computational analysis and expression pattern of forkhead box l2 (Foxl2) gene in catfish. Comput Biol Chem 64:9–18. https://doi.org/10.1016/j.compbiolchem.2016.05.001

    Article  CAS  PubMed  Google Scholar 

  31. Wang X, Lu Z, Gomez A, Hon GC, Yue Y, Han D, Fu Y, Parisien M, Dai Q, Jia GF, Ren B, Pan T, He C (2014) N6-methyladenosine-dependent regulation of messenger RNA stability. Nat 505:117–120. https://doi.org/10.1038/nature12730

    Article  CAS  Google Scholar 

  32. Ashida H, Ueyama N, Kinoshita M, Kobayashi T (2013) Molecular identification and expression of FOXL2 and DMRT1 genes from willow minnow Gnathopogon caerulescens. Reprod Biol 13:317–324. https://doi.org/10.1016/j.repbio.2013.10.002

    Article  PubMed  Google Scholar 

  33. Liu W, Zhang H, Xiang YX, Jia KT, Luo MF, Yi MS (2020) A novel germline and somatic cell expression of two sexual differentiation genes, Dmrt1 and Foxl2 in marbled goby (Oxyeleotris marmorata). Aquac 516:734619–734628. https://doi.org/10.1016/j.aquaculture.2019.734619

    Article  CAS  Google Scholar 

  34. Cocquet J, Pailhoux E, Jaubert F, Servel N, Xia X, Pannetier M, Baere ED, Messiaen L, Cotinot C, Fellous M, Veitia R (2002) Evolution and expression of FOXL2. J Med Genet 39:916–921. https://doi.org/10.1016/j.bbrc.2004.05.133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Pannetier M, Servel N, Cocquet J, Besnard N, Cotinot C, Pailhoux E (2003) Expression studies of the PIS-regulated genes suggest different mechanisms of sex determination within mammals. Cytogenet Genome Res 101(3–4):99–205. https://doi.org/10.1159/000074337

    Article  CAS  Google Scholar 

  36. Govoroun MS, Pannetier M, Pailhoux E, Cocquet J, Brillard JP, Couty I, Batellier F, Cotinot C (2004) Isolation of chicken homolog of the FOXL2 gene and comparison of its expression patterns with those of aromatase during ovarian development. Dev Dyn 231:859–870. https://doi.org/10.1002/dvdy.20189

    Article  CAS  PubMed  Google Scholar 

  37. Liu XL, Zhang ZF, Shao MY, Liu JG, Muhammad F (2012) Sexually dimorphic expression of foxl2 during gametogenesis in scallop Chlamys farreri, conserved with vertebrates. Dev Genes Evol 222:279–286. https://doi.org/10.1007/s00427-012-0410-z

    Article  CAS  PubMed  Google Scholar 

  38. Si YF, Ding YX, He F, Wen HS, Li JF, Zhao JL, Huang ZJ (2016) DNA methylation level of cyp19a1a and Foxl2 gene related to their expression patterns and reproduction traits during ovary development stages of Japanese flounder (Paralichthys olivaceus). Gene 575:321–330. https://doi.org/10.1016/j.gene.2015.09.006

    Article  CAS  PubMed  Google Scholar 

  39. Bellessort B, Bachelot A, Heude É, Alfama G, Fontaine G, Cardinal ML, Treier M, Levi G (2015) Role of FOXL2 in uterine maturation and function. Hum Mol Genet 24:3092–3103. https://doi.org/10.1093/hmg/ddv061

    Article  CAS  PubMed  Google Scholar 

  40. Li Q, Xie J, He L, Wang YL, Yang HD, Duan ZL, Wang Q (2015) FOXL2 down-regulates vitellogenin expression at mature stage in Eriocheir sinensis. Biosci Rep 35(6):e00278. https://doi.org/10.1042/BSR20150151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Wang DS, Kobayashi T, Nagahama Y (2004) Molecular cloning and gene expression of Foxl2 in the Nile tilapia, Oreochromis niloticus. Biochem Biophys Res Commun 320:83–89. https://doi.org/10.1016/j.bbrc.2004.05.133

    Article  CAS  PubMed  Google Scholar 

  42. Ijiri S, Kaneko H, Kobayashi T, Wang DS, Sakai F, Paul-Prasanth B, Nakamura M, Nagahama Y (2008) Sexual dimorphic expression of genes in gonads during early differentiation of a teleost fish, the Nile tilapia Oreochromis niloticus. Biol Reprod 78:333–341. https://doi.org/10.1095/biolreprod.107.064246

    Article  CAS  PubMed  Google Scholar 

  43. Baker BS, Ridge KA (1980) Sex and the single cell. I. On the action ofthe major loci affecting sex determination in Drosophila melanogaster. Genetics 94:383–423. https://doi.org/10.1093/genetics/94.2.383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Penalva LO, Sánchez L (2003) The RNA binding protein Sex-lethal (Sxl) and the control of Drosophila sex determination and dosagecompensation. Microbiol Mol Biol Rev 67:343–359. https://doi.org/10.1128/MMBR.67.3.343-359.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Toyota K, Miyakawa H, Hiruta C, Sato T, Katayama H, Ohira T, Iguchi T (2021) Sex determination and differentiation in decapod and cladoceran crustaceans: an overview of endocrine regulation. Genes 12:305–320. https://doi.org/10.3390/genes12020305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This research was financially supported by The National Natural Science Foundation of China under Grant No. 31501858.

Funding

This research was financially supported by The National Natural Science Foundation of China under (Grant No. 31501858).

Author information

Authors and Affiliations

Authors

Contributions

YKZ, HLC and WMW conceived and designed the experiments; YKZ, HLC, QFZ, KT and SLL performed the experiment; YKZ, HLC analyzed the data and wrote the manuscript; WMW provided the experimental resources; WMW and KT revised the manuscript.

Corresponding author

Correspondence to Weimin Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Ethical approval

This study has been approved by the Institutional Animal Care and Use Committee (IACUC) of Huazhong Agricultural University (Wuhan, China) and conducted in accordance with ethical standards, the national and international guidelines.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1341 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, Y., Chen, H., Zhang, Q. et al. Molecular cloning and expression patterns of a sex-biased transcriptional factor Foxl2 in the giant freshwater prawn (Macrobrachium rosenbergii). Mol Biol Rep 50, 3581–3591 (2023). https://doi.org/10.1007/s11033-022-07526-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-022-07526-7

Keywords

Navigation