Skip to main content
Log in

Identification of two major direct repeat unit clusters, 8i and 11ce, among methicillin resistant Staphylococcus aureus strains: the emergence of novel dru types and repeats

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Background

The changing epidemiology and decreasing susceptibility to first-line antibiotics, such as vancomycin and linezolid, leave clinicians with few therapeutic options for MRSA infections. This study aimed to conduct an epidemiology study and characterize MRSA isolates.

Methods

A total of 150 MRSA isolates were collected from clinical specimens. Antimicrobial susceptibility was determined using the disk diffusion method. Resistance and major virulence genes were screened using the polymerase chain reaction. The SCCmec and dru typing were used to conduct molecular epidemiology. The BioNumerics tandem-repeat sequence typing plug-in tool was utilized for dru type cluster analysis. We constructed a minimum spanning tree using the similarity matrix of the DSI model.

Results

We discovered 24 dru types among the 55 dru sequenced MRSA isolates. Additionally, eight new dru types were discovered and added to the dru typing database. Two dru clusters (8i, 11ce) and nine single dru types were identified in 55 dru sequenced MRSA isolates. The two dru clusters, 8i and 11ce, accounted for 46 MRSA isolates (83.63%). The most common one of the nine singles dru types in this study was dt9bd, which belonged to the SCCmec types of IX.

Conclusions

Given that two clusters account for the majority of strains in our study, we can conclude that the genetic origin of these strains is the same. Therefore, the spread of these strains can be prevented with effective MRSA monitoring in hospitals and communities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

Not applicable.

Abbreviations

Dru :

Direct repeat unit

S. aureus :

Staphylococcus aureus

MRSA:

Methicillin-resistant S. aureus

MSSA :

Methicillin-sensitive S. aureus

SCCmec :

Staphylococcal chromosome cassette mec

CA-MRSA:

Community-acquired MRSA

nuc :

Thermostable nuclease

CLSI:

Clinical and laboratory standards institute

BHI:

Brain heart infusion broth

MDR:

Multidrug-resistance

MST:

Minimum spanning tree

MAR:

Multiple antibiotic-resistant

ERY:

Erythromycin

CD:

Clindamycin

SXT:

Trimethoprim/sulfamethoxazole

GM:

Gentamicin

TE:

Tetracycline

RA:

Rifampin

hla :

Hemolysin A

tst :

Toxic shock syndrome toxin

pvl :

Panton–Valentine leucocidin

sea, seb, and sec :

Staphylococcal enterotoxin a, b, and c

References

  1. Lakhundi S, Zhang K (2018) Methicillin-resistant Staphylococcus aureus: molecular characterization, evolution, and epidemiology. Clin Microbiol Rev 31(4):e00020–e000218

    Article  CAS  Google Scholar 

  2. Turner NA, Sharma-Kuinkel BK et al (2019) Methicillin-resistant Staphylococcus aureus: an overview of basic and clinical research. Nat Rev Microbiol 17(4):203–218

    Article  CAS  Google Scholar 

  3. Singh-Moodley A, Lowe M et al (2020) Diversity of SCCmec elements and spa types in South African Staphylococcus aureus mecA-positive blood culture isolates. BMC Infect Dis 20(1):816

    Article  CAS  Google Scholar 

  4. Ghaznavi-Rad E, Goering RV et al (2011) mec-associated dru typing in the epidemiological analysis of ST239 MRSA in Malaysia. Eur J Clin Microbiol Infect Dis 30(11):1365–1369

    Article  CAS  Google Scholar 

  5. Ho C-M, Ho M-W et al (2015) Fine typing of methicillin-resistant Staphylococcus aureus isolates using direct repeat unit and staphylococcal interspersed repeat unit typing methods. J Microbiol Immunol Infect 48(4):370–375

    Article  Google Scholar 

  6. Liu J, Chen D et al (2016) Staphylococcal chromosomal cassettes mec (SCCmec): a mobile genetic element in methicillin-resistant Staphylococcus aureus. Microb Pathog 101:56–67

    Article  CAS  Google Scholar 

  7. Sharma M, Nunez-Garcia J et al (2016) Livestock-associated methicillin resistant Staphylococcus aureus (LA-MRSA) clonal complex (CC) 398 isolated from UK animals belong to European lineages. Front Microbiol 7:81–88

    Google Scholar 

  8. Urushibara N, Aung MS et al (2020) Novel staphylococcal cassette chromosome mec (SCCmec) type XIV (5A) and a truncated SCCmec element in SCC composite islands carrying speG in ST5 MRSA in Japan. J Antimicrob Chemother 75(1):46–50

    CAS  PubMed  Google Scholar 

  9. Aouati H, Hadjadj L et al (2021) Emergence of methicillin-resistant Staphylococcus aureus ST239/241 SCCmec-III mercury in Eastern Algeria. Pathogens 10(11):1503

    Article  CAS  Google Scholar 

  10. Bartels MD, Boye K et al (2013) Associations between dru types and SCCmec cassettes. PLoS ONE 8(4):e61860

    Article  CAS  Google Scholar 

  11. Popovich KJ, Green SJ et al (2021) MRSA transmission in intensive care units: genomic analysis of patients, their environments, and healthcare workers. Clin Infect Dis 72(11):1879–1887

    Article  Google Scholar 

  12. Adams CE, Dancer SJ (2020) Dynamic transmission of Staphylococcus aureus in the intensive care unit. Int J Environ Res Public Health 17(6):2109

    Article  Google Scholar 

  13. Kadlec K, Schwarz S et al (2015) Direct repeat unit (dru) typing of methicillin-resistant Staphylococcus pseudintermedius from dogs and cats. J Clin Microbiol 53(12):3760–3765

    Article  CAS  Google Scholar 

  14. Dadashi M, Nasiri MJ et al (2018) Methicillin-resistant Staphylococcus aureus (MRSA) in Iran: a systematic review and meta-analysis. J Glob Antimicrob Resist 12:96–103

    Article  Google Scholar 

  15. Graber HU, Casey MG et al (2007) Development of a highly sensitive and specific assay to detect Staphylococcus aureus in bovine mastitic milk. J Dairy Sci 90(10):4661–4669

    Article  CAS  Google Scholar 

  16. Wayne, PA CLSI (2018) Performance Standards for Antimicrobial Susceptibility Testing. 28th ed. CLSI supplement M100. Clinical and Laboratory Standards Institute

  17. Mehrotra M, Wang G et al (2000) Multiplex PCR for detection of genes for Staphylococcus aureus enterotoxins, exfoliative toxins, toxic shock syndrome toxin 1, and methicillin resistance. J Clin Microbiol 38(3):1032–1035

    Article  CAS  Google Scholar 

  18. Goering RV, Morrison D et al (2008) Usefulness of mec-associated direct repeat unit (dru) typing in the epidemiological analysis of highly clonal methicillin-resistant Staphylococcus aureus in Scotland. Clin Microbiol Infect 14(10):964–969

    Article  CAS  Google Scholar 

  19. Soroush S, Jabalameli F et al (2016) Investigation of biofilm formation ability, antimicrobial resistance and the Staphylococcal cassette chromosome mec patterns of methicillin resistant Staphylococcus epidermidis with different sequence types isolated from children. Microb Pathog 93:126–130

    Article  CAS  Google Scholar 

  20. Ito T, Kuwahara-Arai K et al (2014) Staphylococcal cassette chromosome mec (SCCmec) analysis of MRSA. Methods Mol Biol 1085:131–148

    Article  CAS  Google Scholar 

  21. Jiang B, Wang Y et al (2017) Panton-valentine leucocidin (PVL) as a potential indicator for prevalence, duration, and severity of Staphylococcus aureus osteomyelitis. Front Microbiol. https://doi.org/10.3389/fmicb.2017.02355

    Article  PubMed  PubMed Central  Google Scholar 

  22. Zmantar T, Chaieb K et al (2008) Multiplex PCR detection of the antibiotic resistance genes in Staphylococcus aureus strains isolated from auricular infections. Folia Microbiol 53(4):357–362

    Article  CAS  Google Scholar 

  23. Choi SM, Kim S-H et al (2003) Multiplex PCR for the detection of genes encoding aminoglycoside modifying enzymes and methicillin resistance among Staphylococcus species. J Korean Med Sci 18(5):631–636

    Article  CAS  Google Scholar 

  24. Benson G (1997) Sequence alignment with tandem duplication. J Comput Biol 4(3):351–367

    Article  CAS  Google Scholar 

  25. Hiramatsu K, Ito T et al (2013) Genomic basis for methicillin resistance in Staphylococcus aureus. Infect Chemother 45(2):117–136

    Article  CAS  Google Scholar 

  26. Chongtrakool P, Ito T et al (2006) Staphylococcal cassette chromosome mec (SCCmec) typing of methicillin-resistant Staphylococcus aureus strains isolated in 11 Asian countries: a proposal for a new nomenclature for SCCmec elements. Antimicrob Agents Chemother 50(3):1001–1012

    Article  CAS  Google Scholar 

  27. Xu Z, Li L et al (2011) Resistance class 1 integron in clinical methicillin-resistant Staphylococcus aureus strains in Southern China, 2001–2006. Clin Microbiol Infect 17(5):714–718

    Article  CAS  Google Scholar 

  28. Ray GT, Suaya JA et al (2012) Trends and characteristics of culture-confirmed Staphylococcus aureus infections in a large U.S. integrated health care organization. J Clin Microbiol 50(6):1950–1957

    Article  Google Scholar 

  29. Namvar AE, Afshar M et al (2014) Characterisation of SCCmec elements in methicillin-resistant Staphylococcus aureus isolated from burn patients. Burns 40(4):708–712

    Article  Google Scholar 

  30. Aires de Sousa M, Crisóstomo MI et al (2003) Frequent recovery of a single clonal type of multidrug-resistant Staphylococcus aureus from patients in two hospitals in Taiwan and China. J Clin Microbiol 41(1):159–163

    Article  CAS  Google Scholar 

  31. Arakere G, Nadig S et al (2005) Genotyping of methicillin-resistant Staphylococcus aureus strains from two hospitals in Bangalore South India. J Clin Microbiol 43(7):3198–3202

    Article  CAS  Google Scholar 

  32. Oliveira DC, Tomasz A et al (2001) The evolution of pandemic clones of methicillin-resistant Staphylococcus aureus: identification of two ancestral genetic backgrounds and the associated mec elements. Microb Drug Resist 7(4):349–361

    Article  CAS  Google Scholar 

  33. Ebrahim-Saraie HS, Motamedifar M et al (2015) Emergence of SCCmec Type I obtained from clinical samples in shiraz teaching hospitals, South-West of Iran. Jundishapur J Microbiol 8(6):e16998

    PubMed  PubMed Central  Google Scholar 

  34. Moshtagheian S, Halaji M et al (2018) Molecular characteristics of methicillin-resistant Staphylococcus aureus nasal carriage from hospitalized patients and medical staff in Isfahan. Iran Ann Ig 30(3):237–244

    CAS  PubMed  Google Scholar 

  35. Parhizgari N, Khoramrooz SS et al (2016) High frequency of multidrug-resistant Staphylococcus aureus with SCCmec type III and Spa types t037 and t631 isolated from burn patients in southwest of Iran. APMIS 124(3):221–228

    Article  CAS  Google Scholar 

  36. Sedaghat H, Esfahani BN et al (2018) Genetic diversity of Staphylococcus aureus strains from a teaching hospital in Isfahan, Iran: the emergence of MRSA ST639- SCCmec III and ST343- SCCmec III. Iran J Microbiol 10(2):82–89

    PubMed  PubMed Central  Google Scholar 

  37. Firoozeh F, Omidi M et al (2020) Molecular analysis of methicillin-resistant Staphylococcus aureus isolates from four teaching hospitals in Iran: the emergence of novel MRSA clones. Antimicrob Resist Infect Control 9(1):112–119

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to express their gratitude to the Department of Microbiology and the Al-Zahra Laboratory at Isfahan University of Medical Sciences.

Funding

This study was funded by Shahed University of Medical Science’s Vice Chancellor for Research.

Author information

Authors and Affiliations

Authors

Contributions

ML designed and performed the experiments with support from TN, AS, RVG, analyzed the results of dru sequencing and added new dru types to database. MSD, analyzed the results and wrote the manuscript with support from SAH, RVG, MN, supervised the project. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Mohammad Niakan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This study has the formal approval of the Research Ethics Committee of Shahed University of Medical Sciences, Tehran, Iran (Approval No: IR.SHAHED.REC.1398.089).

Consent to participate

All experiments and methods were performed in accordance with relevant guidelines and regulations. All phases of the study have received ethics approval from the Shahed University of Medical Sciences, Tehran, Iran (Approval No: IR.SHAHED.REC.1398.089), and the informed consent was obtained from each participant included in the study. Also, informed consent was obtained from the parents or legal guardians of participants under 18 years of age.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 15 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Latifpour, M., Goering, R.V., Havaei, S.A. et al. Identification of two major direct repeat unit clusters, 8i and 11ce, among methicillin resistant Staphylococcus aureus strains: the emergence of novel dru types and repeats. Mol Biol Rep 49, 8229–8239 (2022). https://doi.org/10.1007/s11033-022-07484-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-022-07484-0

Keywords

Navigation