Skip to main content

Advertisement

Log in

The role of protein glycosylation in muscle diseases

  • Review
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Introduction

As a post-translational modification, glycosylation plays vital role in regulating the folding and function of proteins necessary for many biological processes. Unlike glycation, glycosylation is an enzymatic process; glycosyltransferases transfer sugars to proteins, forming glycosidic bonds with amino acid residues on proteins. Changes that interfere with the enzymatic reaction and result in abnormal glycosylation can spatio-temporally affect the balance of glycosylation, leading to disease states. Muscle diseases have been associated with dysfunctional protein glycosylation, and many studies have focused on the pathophysiology underlying this association. This review aims to summarize the research progress on protein glycosylation in the pathogenesis of muscle diseases and provides new insight into the muscle research field.

Methods

Literatures were reviewed comparatively and data were organized to find information about protein glycosylation and its role in muscle disease.

Results

Protein glycosylation modification is closely related to the occurrence of muscle diseases. α-DG is a key protein in the study of inherited muscle diseases and has a wide range of glycosylation, including O-linked glycosylation and N-linked glycosylation. Besides, O-GlcNAc glycosylation is an important mechanism of protein glycosylation, helping maintaining the structure and function of skeletal muscle and participating in multiple biological processes. Protein glycosylation is also connected to muscle disease and neurodegenerative diseases, especially Alzheimer’s disease.

Conclusions

Taken together, better understanding of protein glycosylation and its implication in muscle disease would help provide new perspectives in the prevention and treatment measures for human muscle diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability Statement

Data sharing is not applicable to this article, as no new data were created or analyzed in this study.

Abbreviations

AGP:

arabingalactose protein

p75NTR:

human neurotrophin receptor P75

PMD:

progressive muscular dystrophy

CMD:

congenital muscular dystrophy

FCMD:

Fukuyama congenital muscular dystrophy

MDC1C:

congenital muscular dystrophy type 1C

MDC1D:

congenital muscular dystrophy type 1D

FKRP:

Fukutin-related protein

LARGE1:

like-acetylglucosaminyltransferase

LGMD2I:

limb girdle muscular dystrophy Type 2I

GC:

Golgi complex

POMT1:

O-mannosyltransferase 1

DG:

dystroglycan

MD:

muscular dystrophy

AAV9:

adeno-associated virus serotype 9

RPTPζ:

receptor protein-tyrosine phosphatase ζ

CMS:

congenital myasthenic syndrome

GFPT1:

glutamine fructose-6-phosphate transaminase

DPAGT1:

dolichyl-phosphate (UDP-N-acetylglucosamine

ALG2:

alpha-1,3-mannosyl ransferase

ALG14:

UDP-N-acetylglucosaminyltransferase subunit

GNE:

UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase

DMRV:

distal myopathy with rimmed vacuoles

hIBM2:

hereditary inclusion body myopathy

RV:

rimmed vacuoles

DMD:

Duchenne muscular dystrophy

OGT:

O-GlcNAc transferase

OGA:

O-GlcNAcase

HRT:

hormone replacement therapy

SCs:

satellite cells

s-IBM:

sporadic inclusion-body myositis

MHC:

myosin heavy chain

IIM:

idiopathic inflammatory myopathies

LEMS:

Lambert-Eaton myasthenic syndrome

cGvHD:

chronic graft-versus-host disease

PM:

polymyositis

CCIM:

citical illness myopathy

References

  1. Haltiwanger RS (2002) Regulation of signal transduction pathways in development by glycosylation. Curr Opin Struct Biol 12:593–598. https://doi.org/10.1016/s0959-440x(02)00371-8

  2. Jayaprakash NG, Surolia A (2017) Role of glycosylation in nucleating protein folding and stability. Biochem J 474:2333–2347. https://doi.org/10.1042/bcj20170111

    Article  CAS  PubMed  Google Scholar 

  3. Frappaolo A, Karimpour-Ghahnavieh A, Sechi S, Giansanti MG (2020) The Close Relationship between the Golgi Trafficking Machinery and Protein Glycosylation. 9. https://doi.org/10.3390/cells9122652

  4. Reily C, Stewart TJ, Renfrow MB, Novak J (2019) Glycosylation in health and disease. 15:346–366. https://doi.org/10.1038/s41581-019-0129-4

  5. Schirrmacher V (2020) Mitochondria at Work: New Insights into Regulation and Dysregulation of Cellular Energy Supply and Metabolism. Biomedicines 8. https://doi.org/10.3390/biomedicines8110526

  6. Bolanle IO, Riches-Suman K, Loubani M, Williamson R, Palmer TM (2021) Revascularisation of type 2 diabetics with coronary artery disease: Insights and therapeutic targeting of O-GlcNAcylation. Nutr Metab Cardiovasc Dis 31:1349–1356. https://doi.org/10.1016/j.numecd.2021.01.017

    Article  CAS  PubMed  Google Scholar 

  7. Yap SS, Nguyen-Khuong T, Rudd PM, Alonso S (2017) Dengue virus glycosylation: what do we know? Frontiers in microbiology 8:1415.

  8. Rudd PM, Wormald MR, Dwek RA (1998) Glycosylation and the immune system. J Protein Chem 17:519.

  9. Haltiwanger RS, Lowe JB (2004) Role of glycosylation in development. Annual review of biochemistry 73:491–537.

  10. Helenius A, Aebi M (2004) Roles of N-linked glycans in the endoplasmic reticulum. Annu Rev Biochem 73:1019–1049. https://doi.org/10.1146/annurev.biochem.73.011303.073752

    Article  CAS  PubMed  Google Scholar 

  11. Broersen K, Voragen AG, Hamer RJ, De Jongh HH (2004) Glycoforms of beta-lactoglobulin with improved thermostability and preserved structural packing. Biotechnol Bioeng 86:78–87. https://doi.org/10.1002/bit.20030

    Article  CAS  PubMed  Google Scholar 

  12. Jafari-Aghdam J, Khajeh K, Ranjbar B, Nemat-Gorgani M (2005) Deglycosylation of glucoamylase from Aspergillus niger: effects on structure, activity and stability. Biochim Biophys Acta 1750:61–68. https://doi.org/10.1016/j.bbapap.2005.03.011

    Article  CAS  PubMed  Google Scholar 

  13. Sinclair AM, Elliott S (2005) Glycoengineering: the effect of glycosylation on the properties of therapeutic proteins. J Pharm Sci 94:1626–1635. https://doi.org/10.1002/jps.20319

    Article  CAS  PubMed  Google Scholar 

  14. Basu D, Tian L, Debrosse T, Poirier E, Emch K, Herock H, Travers A, Showalter AM (2016) Glycosylation of a Fasciclin-Like Arabinogalactan-Protein (SOS5) Mediates Root Growth and Seed Mucilage Adherence via a Cell Wall Receptor-Like Kinase (FEI1/FEI2) Pathway in Arabidopsis. PLoS One 11:e0145092. https://doi.org/10.1371/journal.pone.0145092

  15. Chen Y, Jin L, Xue B, Jin D, Sun F, Wen C (2017) NRAGE induces β-catenin/Arm O-GlcNAcylation and negatively regulates Wnt signaling. Biochem Biophys Res Commun 487:433–437. https://doi.org/10.1016/j.bbrc.2017.04.080

  16. Arnold JN, Wormald MR, Sim RB, Rudd PM, Dwek RA (2007) The impact of glycosylation on the biological function and structure of human immunoglobulins. Annu Rev Immunol 25:21–50. https://doi.org/10.1146/annurev.immunol.25.022106.141702

    Article  CAS  PubMed  Google Scholar 

  17. Urbanowicz RA, Wang R, Schiel JE, Keck ZY, Kerzic MC, Lau P, Rangarajan S, Garagusi KJ, Tan L, Guest JD, Ball JK, Pierce BG, Mariuzza RA, Foung SKH, Fuerst TR (2019) Antigenicity and Immunogenicity of Differentially Glycosylated Hepatitis C Virus E2 Envelope Proteins Expressed in Mammalian and Insect Cells. J Virol 93. https://doi.org/10.1128/jvi.01403-18

  18. Tian J, López CA, Derdeyn CA, Jones MS, Pinter A, Korber B, Gnanakaran S (2016) Effect of Glycosylation on an Immunodominant Region in the V1V2 Variable Domain of the HIV-1 Envelope gp120 Protein. PLoS Comput Biol 12:e1005094. https://doi.org/10.1371/journal.pcbi.1005094

  19. Hirani S, Lambris JD, Müller-Eberhard HJ (1986) Structural analysis of the asparagine-linked oligosaccharides of human complement component C3. Biochem J 233:613–616. https://doi.org/10.1042/bj2330613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Hinshelwood J, Spencer DI, Edwards YJ, Perkins SJ (1999) Identification of the C3b binding site in a recombinant vWF-A domain of complement factor B by surface-enhanced laser desorption-ionisation affinity mass spectrometry and homology modelling: implications for the activity of factor B. J Mol Biol 294:587–599. https://doi.org/10.1006/jmbi.1999.3223

    Article  CAS  PubMed  Google Scholar 

  21. Hourcade DE, Mitchell LM, Oglesby TJ (1999) Mutations of the type A domain of complement factor B that promote high-affinity C3b-binding. J Immunol 162:2906–2911.

  22. Fenaille F, Le Mignon M, Groseil C, Ramon C, Riandé S, Siret L, Bihoreau N (2007) Site-specific N-glycan characterization of human complement factor H. Glycobiology 17:932–944. https://doi.org/10.1093/glycob/cwm060

    Article  CAS  PubMed  Google Scholar 

  23. Pangburn MK (2000) Host recognition and target differentiation by factor H, a regulator of the alternative pathway of complement. Immunopharmacology 49:149–157. https://doi.org/10.1016/s0162-3109(00)80300-8

    Article  CAS  PubMed  Google Scholar 

  24. Ritchie GE, Moffatt BE, Sim RB, Morgan BP, Dwek RA, Rudd PM (2002) Glycosylation and the complement system. Chem Rev 102:305-320-319. https://doi.org/10.1021/cr990294a

  25. DiScipio RG (1992) Ultrastructures and interactions of complement factors H and I. J Immunol 149:2592–2599.

  26. Witherick J, Brady S (2018) Update on muscle disease. J Neurol 265:1717–1725. https://doi.org/10.1007/s00415-018-8856-1

  27. Nigro V, Piluso G (2015) Spectrum of muscular dystrophies associated with sarcolemmal-protein genetic defects. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease 1852:585–593.

  28. Percival JM, Froehner SC (2007) Golgi complex organization in skeletal muscle: a role for Golgi-mediated glycosylation in muscular dystrophies? Traffic 8:184–194. https://doi.org/10.1111/j.1600-0854.2006.00523.x

    Article  CAS  PubMed  Google Scholar 

  29. Brockington M, Yuva Y, Prandini P, Brown SC, Torelli S, Benson MA, Herrmann R, Anderson LV, Bashir R, Burgunder JM, Fallet S, Romero N, Fardeau M, Straub V, Storey G, Pollitt C, Richard I, Sewry CA, Bushby K, Voit T, Blake DJ, Muntoni F (2001) Mutations in the fukutin-related protein gene (FKRP) identify limb girdle muscular dystrophy 2I as a milder allelic variant of congenital muscular dystrophy MDC1C. Hum Mol Genet 10:2851–2859. https://doi.org/10.1093/hmg/10.25.2851

    Article  CAS  PubMed  Google Scholar 

  30. Grewal PK, Holzfeind PJ, Bittner RE, Hewitt JE (2001) Mutant glycosyltransferase and altered glycosylation of alpha-dystroglycan in the myodystrophy mouse. Nat Genet 28:151–154. https://doi.org/10.1038/88865

    Article  CAS  PubMed  Google Scholar 

  31. Balci B, Uyanik G, Dincer P, Gross C, Willer T, Talim B, Haliloglu G, Kale G, Hehr U, Winkler J, Topaloğlu H (2005) An autosomal recessive limb girdle muscular dystrophy (LGMD2) with mild mental retardation is allelic to Walker-Warburg syndrome (WWS) caused by a mutation in the POMT1 gene. Neuromuscul Disord 15:271–275. https://doi.org/10.1016/j.nmd.2005.01.013

    Article  PubMed  Google Scholar 

  32. Martin PT (2005) The dystroglycanopathies: the new disorders of O-linked glycosylation. Semin Pediatr Neurol 12:152–158. https://doi.org/10.1016/j.spen.2005.10.003

    Article  PubMed  PubMed Central  Google Scholar 

  33. McMorran BJ, Miceli MC, Baum LG (2017) Lectin-binding characterizes the healthy human skeletal muscle glycophenotype and identifies disease-specific changes in dystrophic muscle. Glycobiology 27:1134–1143 https: //. doi. https://doi.org/10.1093/glycob/cwx073

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Martin PT (2006) Mechanisms of disease: congenital muscular dystrophies-glycosylation takes center stage. Nat Clin Pract Neurol 2:222–230. https://doi.org/10.1038/ncpneuro0155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Briggs DC, Yoshida-Moriguchi T, Zheng T, Venzke D, Anderson ME, Strazzulli A, Moracci M, Yu L, Hohenester E, Campbell KP (2016) Structural basis of laminin binding to the LARGE glycans on dystroglycan. 12:810–814 https://doi.org/10.1038/nchembio.2146

  36. Nickolls AR, Bönnemann CG (2018) The roles of dystroglycan in the nervous system: insights from animal models of muscular dystrophy. 11. https://doi.org/10.1242/dmm.035931

  37. T E Dystroglycans. Chemistry to Systems Biology 3:285–296.

  38. Ohtsuka Y, Kanagawa M, Yu CC, Ito C, Chiyo T, Kobayashi K, Okada T, Takeda S, Toda T (2015) Fukutin is prerequisite to ameliorate muscular dystrophic phenotype by myofiber-selective LARGE expression. Sci Rep 5:8316. https://doi.org/10.1038/srep08316

  39. Godfrey C, Foley AR, Clement E, Muntoni F (2011) Dystroglycanopathies: coming into focus. Curr Opin Genet Dev 21:278–285 https: //. doi. https://doi.org/10.1016/j.gde.2011.02.001

    Article  CAS  PubMed  Google Scholar 

  40. Inamori K, Yoshida-Moriguchi T, Hara Y, Anderson ME, Yu L, Campbell KP (2012) Dystroglycan function requires xylosyl- and glucuronyltransferase activities of LARGE. Science 335:93–96. https://doi.org/10.1126/science.1214115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Bailey EC, Alrowaished SS, Kilroy EA, Crooks ES, Drinkert DM, Karunasiri CM, Belanger JJ, Khalil A, Kelley JB, Henry CA (2019) NAD + improves neuromuscular development in a zebrafish model of FKRP-associated dystroglycanopathy. 9:21. https://doi.org/10.1186/s13395-019-0206-1

  42. Wood AJ, Lin CH (2021) FKRP-dependent glycosylation of fibronectin regulates muscle pathology in muscular dystrophy. 12:2951. https://doi.org/10.1038/s41467-021-23217-6

  43. Kim J, Hopkinson M, Kavishwar M, Fernandez-Fuente M, Brown SC (2016) Prenatal muscle development in a mouse model for the secondary dystroglycanopathies. Skelet Muscle 6:3. https://doi.org/10.1186/s13395-016-0073-y

  44. Belaya K, Rodríguez Cruz PM, Liu WW, Maxwell S, McGowan S, Farrugia ME, Petty R, Walls TJ, Sedghi M, Basiri K, Yue WW, Sarkozy A, Bertoli M, Pitt M, Kennett R, Schaefer A, Bushby K, Parton M, Lochmüller H, Palace J, Muntoni F, Beeson D (2015) Mutations in GMPPB cause congenital myasthenic syndrome and bridge myasthenic disorders with dystroglycanopathies. Brain 138:2493–2504 https: //. doi. https://doi.org/10.1093/brain/awv185

    Article  PubMed  PubMed Central  Google Scholar 

  45. Jensen BS, Willer T, Saade DN, Cox MO, Mozaffar T, Scavina M, Stefans VA, Winder TL, Campbell KP, Moore SA, Mathews KD (2015) GMPPB-Associated Dystroglycanopathy: Emerging Common Variants with Phenotype Correlation. Hum Mutat 36:1159–1163 https: //. doi. https://doi.org/10.1002/humu.22898

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Franzka P, Henze H, Jung MJ, Schüler SC, Mittag S, Biskup K, Liebmann L, Kentache T, Morales J, Martínez B, Katona I, Herrmann T, Huebner AK, Hennings JC, Groth S, Gresing L, Horstkorte R, Marquardt T, Weis J, Kaether C, Mutchinick OM, Ori A, Huber O, Blanchard V, von Maltzahn J, Hübner CA (2021) GMPPA defects cause a neuromuscular disorder with α-dystroglycan hyperglycosylation. J Clin Invest 131. https://doi.org/10.1172/jci139076

  47. Xu R, Singhal N, Serinagaoglu Y, Chandrasekharan K, Joshi M, Bauer JA, Janssen PM, Martin PT (2015) Deletion of Galgt2 (B4Galnt2) reduces muscle growth in response to acute injury and increases muscle inflammation and pathology in dystrophin-deficient mice. Am J Pathol 185:2668–2684 https: //. doi. https://doi.org/10.1016/j.ajpath.2015.06.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Thomas PJ, Xu R, Martin PT (2016) B4GALNT2 (GALGT2) Gene Therapy Reduces Skeletal Muscle Pathology in the FKRP P448L Mouse Model of Limb Girdle Muscular Dystrophy 2I. Am J Pathol 186:2429–2448 https: //. doi. https://doi.org/10.1016/j.ajpath.2016.05.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Schessl J, Zou Y, Bönnemann CG (2006) Congenital muscular dystrophies and the extracellular matrix. Semin Pediatr Neurol 13:80–89 https: //. doi. https://doi.org/10.1016/j.spen.2006.06.003

    Article  PubMed  Google Scholar 

  50. Dwyer CA, Katoh T, Tiemeyer M, Matthews RT (2015) Neurons and glia modify receptor protein-tyrosine phosphatase ζ (RPTPζ)/phosphacan with cell-specific O-mannosyl glycans in the developing brain. J Biol Chem 290:10256–10273. https://doi.org/10.1074/jbc.M114.614099

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Selcen D, Shen XM, Milone M, Brengman J, Ohno K, Deymeer F, Finkel R, Rowin J, Engel AG (2013) GFPT1-myasthenia: clinical, structural, and electrophysiologic heterogeneity. Neurology 81:370–378. https://doi.org/10.1212/WNL.0b013e31829c5e9c

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Selcen D, Shen XM, Brengman J, Li Y, Stans AA, Wieben E, Engel AG (2014) DPAGT1 myasthenia and myopathy: genetic, phenotypic, and expression studies. Neurology 82:1822–1830. https://doi.org/10.1212/wnl.0000000000000435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Cossins J, Belaya K, Hicks D, Salih MA, Finlayson S, Carboni N, Liu WW, Maxwell S, Zoltowska K, Farsani GT, Laval S, Seidhamed MZ, Donnelly P, Bentley D, McGowan SJ, Müller J, Palace J, Lochmüller H, Beeson D (2013) Congenital myasthenic syndromes due to mutations in ALG2 and ALG14. Brain 136:944–956 https: //. doi. https://doi.org/10.1093/brain/awt010

    Article  PubMed  PubMed Central  Google Scholar 

  54. Engel AG, Shen XM, Selcen D, Sine SM (2015) Congenital myasthenic syndromes: pathogenesis, diagnosis, and treatment. Lancet Neurol 14:461. https://doi.org/10.1016/s1474-4422(15)00010 – 1

  55. Zoltowska K, Webster R, Finlayson S, Maxwell S, Cossins J, Müller J, Lochmüller H, Beeson D (2013) Mutations in GFPT1 that underlie limb-girdle congenital myasthenic syndrome result in reduced cell-surface expression of muscle AChR. Hum Mol Genet 22:2905–2913 https: //. doi. https://doi.org/10.1093/hmg/ddt145

    Article  CAS  PubMed  Google Scholar 

  56. O’Connor E, Töpf A, Zahedi RP, Spendiff S, Cox D, Roos A, Lochmüller H (2018) Clinical and research strategies for limb-girdle congenital myasthenic syndromes. Ann N Y Acad Sci 1412:102–112 https: //. doi. https://doi.org/10.1111/nyas.13520

    Article  PubMed  Google Scholar 

  57. Helman G, Sharma S, Crawford J, Patra B, Jain P, Bent SJ, Urtizberea JA, Saran RK, Taft RJ, van der Knaap MS, Simons C (2019) Leukoencephalopathy due to variants in GFPT1-associated congenital myasthenic syndrome. 92:e587-e593. https://doi.org/10.1212/wnl.0000000000006886

  58. Rodríguez Cruz PM, Belaya K, Basiri K, Sedghi M, Farrugia ME, Holton JL, Liu WW, Maxwell S, Petty R, Walls TJ, Kennett R, Pitt M, Sarkozy A, Parton M, Lochmüller H, Muntoni F, Palace J, Beeson D (2016) Clinical features of the myasthenic syndrome arising from mutations in GMPPB. J Neurol Neurosurg Psychiatry 87:802–809 https: //. doi. https://doi.org/10.1136/jnnp-2016-313163

    Article  PubMed  Google Scholar 

  59. Devi S, Yadav R, Chanana P, Arya R (2018) Fighting the Cause of Alzheimer’s and GNE Myopathy. Front Neurosci 12:669. https://doi.org/10.3389/fnins.2018.00669

  60. Huizing M, Rakocevic G, Sparks SE, Mamali I, Shatunov A, Goldfarb L, Krasnewich D, Gahl WA, Dalakas MC (2004) Hypoglycosylation of alpha-dystroglycan in patients with hereditary IBM due to GNE mutations. Mol Genet Metab 81:196–202 https: //. doi. https://doi.org/10.1016/j.ymgme.2003.11.012

    Article  CAS  PubMed  Google Scholar 

  61. Ricci E, Broccolini A, Gidaro T, Morosetti R, Gliubizzi C, Frusciante R, Di Lella GM, Tonali PA, Mirabella M (2006) NCAM is hyposialylated in hereditary inclusion body myopathy due to GNE mutations. Neurology 66:755–758. https://doi.org/10.1212/01.wnl.0000200956.76449.3f

  62. Singh R, Chaudhary P, Arya R (2018) Role of IGF-1R in ameliorating apoptosis of GNE deficient cells. Sci Rep 8:7323. https://doi.org/10.1038/s41598-018-25510-9

  63. Awasthi K, Srivastava A, Bhattacharya S, Bhattacharya A (2021) Tissue specific expression of sialic acid metabolic pathway: role in GNE myopathy. 42:99–116 https://doi.org/10.1007/s10974-020-09590-7

  64. Broccolini A, Gidaro T, De Cristofaro R, Morosetti R, Gliubizzi C, Ricci E, Tonali PA, Mirabella M (2008) Hyposialylation of neprilysin possibly affects its expression and enzymatic activity in hereditary inclusion-body myopathy muscle. J Neurochem 105:971–981. https://doi.org/10.1111/j.1471-4159.2007.05208.x

  65. Leoyklang P, Malicdan MC, Yardeni T, Celeste F, Ciccone C, Li X, Jiang R, Gahl WA, Carrillo-Carrasco N, He M, Huizing M (2014) Sialylation of Thomsen-Friedenreich antigen is a noninvasive blood-based biomarker for GNE myopathy. Biomark Med 8:641–652. https://doi.org/10.2217/bmm.14.2

    Article  CAS  PubMed  Google Scholar 

  66. Hoffman EP, Brown RH Jr, Kunkel LM (1987) Dystrophin: the protein product of the Duchenne muscular dystrophy locus. Cell 51:919–928. https://doi.org/10.1016/0092-8674(87)90579-4

    Article  CAS  PubMed  Google Scholar 

  67. Mendell JR, Shilling C, Leslie ND, Flanigan KM, al-Dahhak R, Gastier-Foster J, Kneile K, Dunn DM, Duval B, Aoyagi A, Hamil C, Mahmoud M, Roush K, Bird L, Rankin C, Lilly H, Street N, Chandrasekar R, Weiss RB (2012) Evidence-based path to newborn screening for Duchenne muscular dystrophy. Ann Neurol 71:304–313. https://doi.org/10.1002/ana.23528

    Article  CAS  PubMed  Google Scholar 

  68. Hoyte K, Kang C, Martin PT (2002) Definition of pre- and postsynaptic forms of the CT carbohydrate antigen at the neuromuscular junction: ubiquitous expression of the CT antigens and the CT GalNAc transferase in mouse tissues. Brain Res Mol Brain Res 109:146–160. https://doi.org/10.1016/s0169-328x(02)00551-x

  69. Martin PT, Zygmunt DA, Ashbrook A, Hamilton S, Packer D, Birch SM, Bettis AK, Balog-Alvarez CJ, Guo LJ, Nghiem PP, Kornegay JN (2021) Short-term treatment of golden retriever muscular dystrophy (GRMD) dogs with rAAVrh74.MHCK7.GALGT2 induces muscle glycosylation and utrophin expression but has no significant effect on muscle strength. PLoS One 16:e0248721. https://doi.org/10.1371/journal.pone.0248721

  70. Cieniewski-Bernard C, Bastide B, Lefebvre T, Lemoine J, Mounier Y, Michalski JC (2004) Identification of O-linked N-acetylglucosamine proteins in rat skeletal muscle using two-dimensional gel electrophoresis and mass spectrometry. Mol Cell Proteomics 3:577–585. https://doi.org/10.1074/mcp.M400024-MCP200

    Article  CAS  PubMed  Google Scholar 

  71. Cieniewski-Bernard C, Montel V, Berthoin S, Bastide B (2012) Increasing O-GlcNAcylation level on organ culture of soleus modulates the calcium activation parameters of muscle fibers. PLoS One 7:e48218. https://doi.org/10.1371/journal.pone.0048218

  72. Cieniewski-Bernard C, Lambert M, Dupont E, Montel V, Stevens L, Bastide B (2014) O-GlcNAcylation, contractile protein modifications and calcium affinity in skeletal muscle. Front Physiol 5:421. https://doi.org/10.3389/fphys.2014.00421

  73. Cieniewski-Bernard C, Mounier Y, Michalski JC, Bastide B (2006) O-GlcNAc level variations are associated with the development of skeletal muscle atrophy. J Appl Physiol (1985) 100:1499–1505. https://doi.org/10.1152/japplphysiol.00865.2005

    Article  CAS  Google Scholar 

  74. Fülöp N, Feng W, Xing D, He K, Nőt LG, Brocks CA, Marchase RB, Miller AP, Chatham JC (2008) Aging leads to increased levels of protein O-linked N-acetylglucosamine in heart, aorta, brain and skeletal muscle in Brown-Norway rats. Biogerontology 9:139. https://doi.org/10.1007/s10522-007-9123-5

  75. Toivonen MH, Pöllänen E, Ahtiainen M, Suominen H, Taaffe DR, Cheng S, Takala T, Kujala UM, Tammi MI, Sipilä S, Kovanen V (2013) OGT and OGA expression in postmenopausal skeletal muscle associates with hormone replacement therapy and muscle cross-sectional area. Exp Gerontol 48:1501–1504. https://doi.org/10.1016/j.exger.2013.10.007

    Article  CAS  PubMed  Google Scholar 

  76. Zumbaugh MD, Geiger AE, Luo J (2021) O-GlcNAc transferase is required to maintain satellite cell function. 39:945–958. https://doi.org/10.1002/stem.3361

  77. Nogalska A, D’Agostino C, Engel WK, Askanas V (2012) Activation of the γ-secretase complex and presence of γ-secretase-activating protein may contribute to Aβ42 production in sporadic inclusion-body myositis muscle fibers. Neurobiol Dis 48:141–149. https://doi.org/10.1016/j.nbd.2012.06.008

    Article  CAS  PubMed  Google Scholar 

  78. Lundberg IE (2001) Idiopathic inflammatory myopathies: why do the muscles become weak? Curr Opin Rheumatol 13:457–460. https://doi.org/10.1097/00002281-200111000-00001

  79. Nagaraju K, Casciola-Rosen L, Lundberg I, Rawat R, Cutting S, Thapliyal R, Chang J, Dwivedi S, Mitsak M, Chen YW, Plotz P, Rosen A, Hoffman E, Raben N (2005) Activation of the endoplasmic reticulum stress response in autoimmune myositis: potential role in muscle fiber damage and dysfunction. Arthritis Rheum 52:1824–1835. https://doi.org/10.1002/art.21103

    Article  CAS  PubMed  Google Scholar 

  80. Nakamura S, Nakano S, Nishii M, Kaneko S, Kusaka H (2012) Localization of O-GlcNAc-modified proteins in neuromuscular diseases. Med Mol Morphol 45:86–90. https://doi.org/10.1007/s00795-011-0542-7

    Article  CAS  PubMed  Google Scholar 

  81. Perdivara I, Peddada SD, Miller FW, Tomer KB, Deterding LJ (2011) Mass spectrometric determination of IgG subclass-specific glycosylation profiles in siblings discordant for myositis syndromes. J Proteome Res 10:2969–2978. https://doi.org/10.1021/pr200397h

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Fernandes-Cerqueira C, Renard N, Notarnicola A, Wigren E, Gräslund S, Zubarev RA, Lundberg IE, Lundström SL (2018) Patients with anti-Jo1 antibodies display a characteristic IgG Fc-glycan profile which is further enhanced in anti-Jo1 autoantibodies. Sci Rep 8:17958. https://doi.org/10.1038/s41598-018-36395-z

  83. Selman MH, Niks EH, Titulaer MJ, Verschuuren JJ, Wuhrer M, Deelder AM (2011) IgG fc N-glycosylation changes in Lambert-Eaton myasthenic syndrome and myasthenia gravis. J Proteome Res 10:143–152. https://doi.org/10.1021/pr1004373

    Article  CAS  PubMed  Google Scholar 

  84. Massaccesi L, Goi G, Tringali C, Barassi A, Venerando B, Papini N (2016) Dexamethasone-Induced Skeletal Muscle Atrophy Increases O-GlcNAcylation in C2C12 Cells. J Cell Biochem 117:1833–1842. https://doi.org/10.1002/jcb.25483

    Article  CAS  PubMed  Google Scholar 

  85. Michelis FV, Bril V, Lipton JH (2015) A case report and literature review of chronic graft-versus-host disease manifesting as polymyositis. Int J Hematol 102:144–146. https://doi.org/10.1007/s12185-015-1768-2

  86. Pestronk A (2020) Chronic Graft Versus Host Myopathies: Noninflammatory, Multi-Tissue Pathology With Glycosylation Disorders. J Neuropathol Exp Neurol 79:102–112. https://doi.org/10.1093/jnen/nlz111

    Article  CAS  PubMed  Google Scholar 

  87. Khan J, Harrison TB, Rich MM, Moss M (2006) Early development of critical illness myopathy and neuropathy in patients with severe sepsis. Neurology 67:1421–1425. https://doi.org/10.1212/01.wnl.0000239826.63523.8e

  88. Yamada T (2020) BGP-15: A potential therapeutic agent for critical illness myopathy. Acta Physiol (Oxf) 229:e13441. https://doi.org/10.1111/apha.13441

  89. Rich MM, Pinter MJ (2003) Crucial role of sodium channel fast inactivation in muscle fibre inexcitability in a rat model of critical illness myopathy. J Physiol 547:555–566. https://doi.org/10.1113/jphysiol.2002.035188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Kraner SD, Novak KR, Wang Q, Peng J, Rich MM (2012) Altered sodium channel-protein associations in critical illness myopathy. Skelet Muscle 2:17. https://doi.org/10.1186/2044-5040-2-17

  91. Sugita S, Saito F, Tang J, Satz J, Campbell K, Südhof TC (2001) A stoichiometric complex of neurexins and dystroglycan in brain. J Cell Biol 154:435–445. https://doi.org/10.1083/jcb.200105003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Hewitt JE, Grewal PK (2003) Glycosylation defects in inherited muscle disease. Cell Mol Life Sci 60:251–258. https://doi.org/10.1007/s000180300020

    Article  CAS  PubMed  Google Scholar 

  93. Lambert M, Richard E, Duban-Deweer S, Krzewinski F, Deracinois B, Dupont E, Bastide B, Cieniewski-Bernard C (2016) O-GlcNAcylation is a key modulator of skeletal muscle sarcomeric morphometry associated to modulation of protein-protein interactions. Biochim Biophys Acta 1860:2017–2030. https://doi.org/10.1016/j.bbagen.2016.06.011

  94. Lambert M, Claeyssen C, Bastide B, Cieniewski-Bernard C (2020) O-GlcNAcylation as a regulator of the functional and structural properties of the sarcomere in skeletal muscle: An update review. 228:e13301. https://doi.org/10.1111/apha.13301

Download references

Acknowledgements

None.

Funding

This work was supported by the Natural Science Foundation of China (82072106, 32071517), the Natural Science Basic Research Plan in Shaanxi Province of China (2020JM-100), and the Shaanxi Provincial Key R&D Program (2018KWZ-10).

Author information

Authors and Affiliations

Authors

Contributions

KD designed the review and drafted the manuscript. KD, SFJ, and YG conducted the research. ARQ conceived the study, participated in its design and coordination, and helped in drafting the manuscript.

Corresponding author

Correspondence to Airong Qian.

Ethics declarations

Conflict of interest

All authors declare no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dang, K., Jiang, S., Gao, Y. et al. The role of protein glycosylation in muscle diseases. Mol Biol Rep 49, 8037–8049 (2022). https://doi.org/10.1007/s11033-022-07334-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-022-07334-z

Keywords

Navigation