Skip to main content

Advertisement

Log in

Bmal1- and Per2-mediated regulation of the osteogenic differentiation and proliferation of mouse bone marrow mesenchymal stem cells by modulating the Wnt/β-catenin pathway

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Background

Bmal1 and Per2 are the core components of the circadian clock genes (CCGs). Bmal1−/− mice exhibit premature aging, as indicated by hypotrichosis and osteoporosis, with a loss of proliferation ability. The same occurs in Per2−/− mice, albeit to a less severe degree. However, whether the effects of Bmal1 and Per2 on proliferation and osteogenic differentiation are synergistic or antagonistic remains unclear. Thus, our study aimed to explore the effects and specific mechanism.

Methods and results

Lentiviral and adenoviral vectors were constructed to silence or overexpress Bmal1 or Per2 and MTT, flow cytometry, RT-qPCR, WB, immunohistochemistry, alizarin red staining and ChIP-Seq analyses were applied to identify the possible mechanism. The successful knockdown and overexpression of Bmal1/Per2 were detected by fluorescence microcopy. Flow cytometry found out that Bmal1 or Per2 knockdown resulted in G1-phase cell cycle arrest. RT-qPCR showed the different expression levels of Wnt-3a, c-myc1 and axin2 in the Wnt/β-catenin signaling pathway as well as the gene expression change of Rorα and Rev-erbα. Meanwhile, related proteins such as β-catenin, TCF-1, and P-GSK-3β were detected. ALP activity and the amount of mineral nodules were compared. ChIP-Seq results showed the possible mechanism.

Conclusions

Bmal1 and Per2, as primary canonical clock genes, showed synergistic effects on the proliferation and differentiation of BMSCs. They would inhibit the Wnt/β-catenin signaling pathway by downregulating Rorα expression or upregulating Rev-erbα expression, both of which were also key elements of CCGs. And this may be the mechanism by which they negatively regulate the osteogenic differentiation of BMSCs.

Graphical abstract

Bmal1 and Per2 show synergistic effects in the proliferation of BMSCs. In addition, they play a synergistic role in negatively regulating the osteogenic differentiation ability of BMSCs. Bmal1 and Per2 may regulate the aging of BMSCs by altering cell proliferation and osteogenic differentiation through Rorα and Rev-erbα to affect Wnt/β-catenin pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

All datasets generated and/or analyzed during this study are included in this published article.

Abbreviations

BMSCs:

Bone marrow mesenchymal stem

Bmal1:

Brain and muscle arant-like-1

Per2:

Period 2

Clock:

Circadian locomotor output cycles kaput

Cry:

Cryptochrome

RORα:

Retinoic acid-related orphan

Rev-erb:

Retinoid-related orphan receptor α

PCR:

Polymerase chain reaction

RT-PCR:

Reverse transcription polymerase chain

RT-qPCR:

Real-time fluorescence quantitative

FBS:

Fetal bovine serum

PBS:

Phosphate-buffered saline

DMSO:

Dimethyl sulfoxide

EDTA:

Ethylene diamine tetraacetic acid

FCM:

Flow cytometry

WB:

Western blot

SA-β-gal:

Senescence-associated β-galactosidase

GFP:

Green fluorescent protein

RFP:

Red fluorescent protein

BSA:

Bovine serum albumin

MTT:

Methyl thiazolyl tetrazolium

CCGs:

Circadian clock genes

ALP:

Alkaline phosphatase

OCN:

Osteocalcin

Runx2:

Runt-related transcription factor 2

Wnt3a:

Wingless Int1 3a

C-myc:

Cell-myc1

TCF1:

T-cell-specific transcription factor1

P-GSK-3:

Phosphorylated glycogen synthase kinase-3β

ChIP-Seq:

Chromatin immunoprecipitation and high-throughput sequencing

References

  1. Casado-Díaz A, Dorado G, Giner M, Montoya MJ, Navarro-Valverde C, Díez-Pérez A et al (2019) Proof of concept on functionality improvement of mesenchymal stem-cells, in postmenopausal osteoporotic women treated with teriparatide (PTH1-34), after suffering atypical fractures. Calcif Tissue Int 104:631–640. https://doi.org/10.1007/s00223-019-00533-0

    Article  CAS  PubMed  Google Scholar 

  2. Luo Z, Liu M, Sun L, Rui F (2015) Icariin recovers the osteogenic differentiation and bone formation of bone marrow stromal cells from a rat model of estrogen deficiency-induced osteoporosis. Mol Med Rep 12:382–388. https://doi.org/10.3892/mmr.2015.3369

    Article  CAS  PubMed  Google Scholar 

  3. Qian G, Zhang L, Wang G, Zhao Z, Peng S, Shuai C (2021) 3D printed Zn-doped mesoporous Silica-incorporated poly-L-lactic acid scaffolds for bone repair. Int J Bioprint 7:346. https://doi.org/10.18063/ijb.v7i2.346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Qian G, Teliang Lu, Jing Z, Rui LD et al (2020) Promoting bone regeneration of calcium phosphate cement by addition of PLGA microspheres and zinc silicate via synergistic effect of in-situ pore generation, bioactive ion stimulation and macrophage immunomodulation. Appl Mater Today. https://doi.org/10.1016/j.apmt.2020.100615

    Article  PubMed  PubMed Central  Google Scholar 

  5. Kondratov VR (2006) Early aging and age-related pathologies in mice deficient in BMAL1, the core componentof the circadian clock. Genes Dev 20:1868–1873. https://doi.org/10.1101/gad.1432206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Mcdearmon EL, Patel KN, Ko CH, Walisser JA, Schook AC, Chong JL et al (2006) Dissecting the functions of the mammalian clock protein BMAL1 by tissue-specific rescue in mice. Science 314:1304–1308. https://doi.org/10.1126/science.1132430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Hood S, Amir S (2017) The aging clock: circadian rhythms and later life. J Clin Investig 127:437–446. https://doi.org/10.1172/JCI90328

    Article  PubMed  PubMed Central  Google Scholar 

  8. Onoue T, Nishi G, Hikima J, Sakai M, Kono T (2019) Circadian oscillation of TNF-alpha gene expression regulated by clock gene, BMAL1 and CLOCK1, in the Japanese medaka (Oryzias latipes). Int Immunopharmacol 70:362–371. https://doi.org/10.1016/j.intimp.2019.02.004

    Article  CAS  PubMed  Google Scholar 

  9. Burish MJ, Chen Z, Yoo SH (2019) Emerging relevance of circadian rhythms in headaches and neuropathic pain. Acta Physiol (Oxf) 225:e13161. https://doi.org/10.1111/apha.13161

    Article  CAS  Google Scholar 

  10. Framnes-DeBoer SN, Bakke E, Yalamanchili S, Peterson H, Sandoval DA, Seeley RJ et al (2020) Bromocriptine improves glucose tolerance independent of circadian timing, prolactin, or the melanocortin-4 receptor. Am J Physiol Endocrinol Metab 318:E62-e71. https://doi.org/10.1152/ajpendo.00325.2019

    Article  CAS  PubMed  Google Scholar 

  11. Lin F, Chen Y, Li X, Zhao Q, Tan Z (2013) Over-expression of circadian clock gene Bmal1 affects proliferation and the canonical Wnt pathway in NIH-3T3 cells. Cell Biochem Funct 31:166–172. https://doi.org/10.1002/cbf.2871

    Article  CAS  PubMed  Google Scholar 

  12. Tsang K, Liu H, Yang Y, Charles JF, Ermann J (2019) Defective circadian control in mesenchymal cells reduces adult bone mass in mice by promoting osteoclast function. Bone 121:172–180. https://doi.org/10.1016/j.bone.2019.01.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Takarada T, Xu C, Ochi H, Nakazato R, Yamada D, Nakamura S et al (2017) Bone resorption is regulated by circadian clock in osteoblasts. J Bone Miner Res 32:872–881. https://doi.org/10.1002/jbmr.3053

    Article  CAS  PubMed  Google Scholar 

  14. Murayama Y, Yahagi N, Takeuchi Y, Aita Y, Mehrazad Saber Z, Wada N et al (2019) Glucocorticoid receptor suppresses gene expression of Rev-erbα (Nr1d1) through interaction with the CLOCK complex. FEBS Lett 593:423–432. https://doi.org/10.1002/1873-3468.13328

    Article  CAS  PubMed  Google Scholar 

  15. Yiew NKH, Chatterjee TK, Tang YL, Pellenberg R, Stansfield BK, Bagi Z et al (2017) A novel role for the Wnt inhibitor APCDD1 in adipocyte differentiation: implications for diet-induced obesity. J Biol Chem 292:6312–6324. https://doi.org/10.1074/jbc.M116.758078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Bajada S, Marshall MJ, Wright KT, Richardson JB, Johnson WEB (2009) Decreased osteogenesis, increased cell senescence and elevated Dickkopf-1 secretion in human fracture non union stromal cells. Bone 45:726–735. https://doi.org/10.1016/j.bone.2009.06.015

    Article  CAS  PubMed  Google Scholar 

  17. Tamaru T, Takamatsu K (2018) Circadian modification network of a core clock driver BMAL1 to harmonize physiology from brain to peripheral tissues. Neurochem Int 119:11–16. https://doi.org/10.1016/j.neuint.2017.12.013

    Article  CAS  PubMed  Google Scholar 

  18. Flores-Hernández E, Velázquez DM, Castañeda-Patlán MC, Fuentes-García G, Fonseca-Camarillo G, Yamamoto-Furusho JK et al (2020) Canonical and non-canonical Wnt signaling are simultaneously activated by Wnts in colon cancer cells. Cell Signal 72:109636. https://doi.org/10.1016/j.cellsig.2020.109636

    Article  CAS  PubMed  Google Scholar 

  19. Shimozaki S, Yamamoto N, Domoto T, Nishida H, Hayashi K, Kimura H et al (2016) Efficacy of glycogen synthase kinase-3 beta targeting against osteosarcoma via activation of beta-catenin. Oncotarget 7:77038–77051. https://doi.org/10.18632/oncotarget.12781

    Article  PubMed  PubMed Central  Google Scholar 

  20. Zhuo H, Wang Y, Zhao Q (2018) The interaction between Bmal1 and Per2 in mouse BMSC osteogenic differentiation. Stem Cells Int 2018:3407821. https://doi.org/10.1155/2018/3407821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Doumpas N, Lampart F, Robinson MD, Lentini A, Nestor CE, Cantù C et al (2019) TCF/LEF dependent and independent transcriptional regulation of Wnt/β-catenin target genes. Embo J. https://doi.org/10.15252/embj.201798873

    Article  PubMed  Google Scholar 

  22. Boucher H, Vanneaux V, Domet T, Parouchev A, Larghero J (2016) Circadian clock genes modulate human bone marrow mesenchymal stem cell differentiation, migration and cell cycle. PLoS ONE 11:e0146674. https://doi.org/10.1371/journal.pone.0146674

    Article  PubMed  PubMed Central  Google Scholar 

  23. He Y, Lin F, Chen Y, Tan Z, Bai D, Zhao Q (2015) Overexpression of the circadian clock gene rev-erbα affects murine bone mesenchymal stem cell proliferation and osteogenesis. Stem Cells Dev 24:1194–1204. https://doi.org/10.1089/scd.2014.0437

    Article  CAS  PubMed  Google Scholar 

  24. Eckstein A, Grzyb J, Hermanowicz P, Łabuz J, Banaś AK (2019) A role for GLABRA1 in dark-induced senescence. Acta Biochim Pol 66:243–248. https://doi.org/10.18388/abp.2018_2825

    Article  CAS  PubMed  Google Scholar 

  25. Rolph DN, Deb M, Kanji S, Greene CJ, Das M, Joseph M et al (2020) Ferutinin directs dental pulp-derived stem cells towards the osteogenic lineage by epigenetically regulating canonical Wnt signaling. Biochim Biophys Acta Mol Basis Dis 1866:165314. https://doi.org/10.1016/j.bbadis.2018.10.032

    Article  CAS  PubMed  Google Scholar 

  26. Ge X, Shi R, Ma X (2017) The secreted protein WNT5A regulates condylar chondrocyte proliferation, hypertrophy and migration. Arch Oral Biol 82:171–179. https://doi.org/10.1016/j.archoralbio.2017.06.019

    Article  CAS  PubMed  Google Scholar 

  27. Zou Y, Salinas P (2014) Introduction: Wnt signaling mechanisms in development and disease. Dev Neurobiol 74:757–758. https://doi.org/10.1002/dneu.22192

    Article  PubMed  Google Scholar 

  28. Klaus A, Saga Y, Taketo MM, Tzahor E, Birchmeier W (2007) Distinct roles of Wnt/beta-catenin and Bmp signaling during early cardiogenesis. Proc Natl Acad Sci USA 104:18531–18536. https://doi.org/10.1073/pnas.0703113104

    Article  PubMed  PubMed Central  Google Scholar 

  29. Shimozaki S, Yamamoto N, Domoto T, Nishida H, Hayashi K, Kimura H et al (2016) Efficacy of glycogen synthase kinase-3β targeting against osteosarcoma via activation of β-catenin. Oncotarget 7:77038–77051. https://doi.org/10.18632/oncotarget.12781

    Article  PubMed  PubMed Central  Google Scholar 

  30. Kriz V, Korinek V (2018) Wnt, RSPO and Hippo signalling in the intestine and intestinal stem cells. Genes (Basel) 9:20. https://doi.org/10.3390/genes9010020

    Article  CAS  PubMed Central  Google Scholar 

  31. Kim M, Jho EH (2014) Cross-talk between Wnt/β-catenin and Hippo signaling pathways: a brief review. BMB Rep 47:540–545. https://doi.org/10.5483/bmbrep.2014.47.10.177

    Article  PubMed  PubMed Central  Google Scholar 

  32. Azzolin L, Panciera T, Soligo S, Enzo E, Bicciato S, Dupont S et al (2014) YAP/TAZ incorporation in the β-catenin destruction complex orchestrates the Wnt response. Cell 158:157–170. https://doi.org/10.1016/j.cell.2014.06.013

    Article  CAS  PubMed  Google Scholar 

  33. Park HW, Kim YC, Yu B, Moroishi T, Mo JS, Plouffe SW et al (2015) Alternative Wnt signaling activates YAP/TAZ. Cell 162:780–794. https://doi.org/10.1016/j.cell.2015.07.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Chen J, Long F (2018) mTOR signaling in skeletal development and disease. Bone Res 6:1. https://doi.org/10.1038/s41413-017-0004-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Khan M, Muzumdar D, Shiras A (2019) Attenuation of tumor suppressive function of FBXO16 ubiquitin ligase activates Wnt signaling in glioblastoma. Neoplasia 21:106–116. https://doi.org/10.1016/j.neo.2018.11.005

    Article  CAS  PubMed  Google Scholar 

  36. Jager J, Wang F, Fang B, Lim HW, Peed LC, Steger DJ et al (2016) The nuclear receptor rev-erbα regulates adipose tissue-specific FGF21 signaling. J Biol Chem 291:10867–10875. https://doi.org/10.1074/jbc.M116.719120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Shin D, Kim IS, Lee JM, Shin SY, Lee JH, Baek SH et al (2014) The hidden switches underlying RORα-mediated circuits that critically regulate uncontrolled cell proliferation. J Mol Cell Biol 6:338–348. https://doi.org/10.1093/jmcb/mju023

    Article  CAS  PubMed  Google Scholar 

  38. Uriz-Huarte A, Date A, Ang H, Ali S, Brady HJM, Fuchter MJ (2020) The transcriptional repressor REV-ERB as a novel target for disease. Bioorg Med Chem Lett 30:127395. https://doi.org/10.1016/j.bmcl.2020.127395

    Article  CAS  PubMed  Google Scholar 

  39. Min HY, Son HE, Jang WG (2019) Estradiol-induced RORα expression positively regulates osteoblast differentiation. Steroids 149:108412. https://doi.org/10.1016/j.steroids.2019.05.004

    Article  CAS  PubMed  Google Scholar 

  40. Salehi M, Kamali E, Karahmadi M, Mousavi SM (2017) RORA and autism in The Isfahan population: is there an epigenetic relationship. Cell J 18:540–546. https://doi.org/10.22074/cellj.2016.4720

    Article  PubMed  Google Scholar 

  41. Green AC, Martin TJ, Purton LE (2016) The role of vitamin A and retinoic acid receptor signaling in post-natal maintenance of bone. J Steroid Biochem Mol Biol 155:135–146. https://doi.org/10.1016/j.jsbmb.2015.09.036

    Article  CAS  PubMed  Google Scholar 

  42. Park JS, Moon SJ, Lim MA, Byun JK, Hwang SH, Yang S et al (2019) Retinoic acid receptor-related receptor alpha ameliorates autoimmune arthritis via inhibiting of Th17 cells and osteoclastogenesis. Front Immunol 10:2270. https://doi.org/10.3389/fimmu.2019.02270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Meyer T, Kneissel M, Mariani J, Fournier B (2000) In vitro and in vivo evidence for orphan nuclear receptor RORalpha function in bone metabolism. Proc Natl Acad Sci USA 97:9197–9202. https://doi.org/10.1073/pnas.150246097

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Yang N, Meng QJ (2016) Circadian clocks in articular cartilage and bone: a compass in the sea of matrices. J Biol Rhythms 31:415–427. https://doi.org/10.1177/0748730416662748

    Article  CAS  PubMed  Google Scholar 

  45. Park SC, Park IG, Kim H, Lee JM (2019) N-terminal domain mediated regulation of RORα1 inhibits invasive growth in prostate cancer. Int J Mol Sci 20:1684. https://doi.org/10.3390/ijms20071684

    Article  CAS  PubMed Central  Google Scholar 

  46. Chatterjee S, Ma K (2016) Circadian clock regulation of skeletal muscle growth and repair. F1000Research 5:1549. https://doi.org/10.12688/f1000research.9076.1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Kim K, Kim JH, Kim I, Seong S, Kim N (2020) Rev-erbα Negatively regulates osteoclast and osteoblast differentiation through p38 MAPK signaling pathway. Mol Cells 43:34–47. https://doi.org/10.14348/molcells.2019.0232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the National Science Foundation of China (No. 81870745 and No. 81371113).

Author information

Authors and Affiliations

Authors

Contributions

JZ and LZ designed the projects, acquired the data and wrote the manuscript. QZ and ZT designed the projects and approved the draft. XW and YY constructed the figures and approved the draft. RL interpreted the data and approved the draft.

Corresponding authors

Correspondence to Zhen Tan or Qing Zhao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval and consent to participate

The Research Ethics Committee of State Key Laboratory of Oral Diseases reviewed our research project and made the resolution as the following: The experiment involved ethical part conforms to the scientific experiment ethical requirement, it is agreed to implement the experiment.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, J., Zhang, L., Tan, Z. et al. Bmal1- and Per2-mediated regulation of the osteogenic differentiation and proliferation of mouse bone marrow mesenchymal stem cells by modulating the Wnt/β-catenin pathway. Mol Biol Rep 49, 4485–4501 (2022). https://doi.org/10.1007/s11033-022-07292-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-022-07292-6

Keywords

Navigation