Skip to main content

Advertisement

Log in

The functional significance and cross-talk of non-coding RNAs in triple negative and quadruple negative breast cancer

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

One of the leading causes of cancer-related deaths worldwide is breast cancer, among which triple-negative breast cancer (TNBC) is the most malignant and lethal subtype. This cancer accounts for 10–20% of all breast cancer deaths. Proliferation, tumorigenesis, and prognosis of TNBC are affected when the androgen receptor (AR) is not expressed, and it is classified as quadruple negative breast cancer (QNBC). Non-coding RNAs, such as microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs), play a significant role in tumorigenesis by virtue of their oncogenic and tumor-suppressive properties. To regulate tumorigenesis, miRNAs interact with their target mRNAs and modulate their expression, whereas lncRNAs can either act alone or interact with miRNAs or other molecules through various signaling pathways. Conversely, circRNAs regulate tumorigenesis by acting as miRNA sponges predominantly. Recently, non-coding RNAs were studied comprehensively for their roles in tumor proliferation, progression, and metastasis. As a result of existing studies and research progress, non-coding RNAs have been implicated in TNBC, necessitating their use as biomarkers for future diagnostic applications. In this review, the non-coding RNAs are explicitly implicated in the regulation of breast cancer, and their cross-talk between TNBC and QNBC is also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

Abbreviations

ABC:

ATP-binding cassette

AR:

Androgen receptor

ATP:

Adenosine triphosphate

BC:

Breast cancer

ceRNA:

Competing endogenous RNA

circRNA:

Circular RNA

EMT:

Epithelial to mesenchymal transition

ER:

Estrogen receptor

HER2:

Human epidermal growth factor receptor 2

LAR:

Luminal androgen receptor

lncRNA:

Long non-coding RNA

miRNA:

MicroRNA

MMP:

Matrix metalloproteinase

MRE:

MiRNA recognition elements

mRNA:

Messenger RNA

ncRNA:

Non-coding RNA

NAC:

Neoadjuvant chemotherapy

ORF:

Open reading frame

PR:

Progesterone receptor

QNBC:

Quadruple negative breast cancer

RBP:

RNA-binding proteins

RNA:

Ribonucleic acid

SNP:

Single nucleotide polymorphisms

TME:

Tumour microenvironment

TNBC:

Triple negative breast cancer

UTR:

Untranslated regions

References

  1. Loh HY, Norman BP, Lai KS, Rahman NMANA, Alitheen NBM, Osman MA (2019) The regulatory role of microRNAs in breast cancer. Int J Mol Sci 20(19):1–27. https://doi.org/10.3390/ijms20194940

    Article  CAS  Google Scholar 

  2. Sung H et al (2021) Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 71(3):209–249. https://doi.org/10.3322/caac.21660

    Article  PubMed  Google Scholar 

  3. Skor MN et al (2013) Glucocorticoid receptor antagonism as a novel therapy for triple-negative breast cancer. Clin Cancer Res 19(22):6163–6172. https://doi.org/10.1158/1078-0432.CCR-12-3826

    Article  CAS  PubMed  Google Scholar 

  4. Astvatsaturyan K, Yue Y, Walts AE, Bose S (2018) Androgen receptor positive triple negative breast cancer: clinicopathologic, prognostic, and predictive features. PLoS ONE. https://doi.org/10.1371/JOURNAL.PONE.0197827

    Article  PubMed  PubMed Central  Google Scholar 

  5. Bd L et al (2011) Identification of human triple-negative breast cancer subtypes and preclinical models for selection of targeted therapies. J Clin Invest 121(7):2750–2767. https://doi.org/10.1172/JCI45014

    Article  CAS  Google Scholar 

  6. Safarpour D, Pakneshan S, Tavassoli FA (2014) Androgen receptor (AR) expression in 400 breast carcinomas: is routine AR assessment justified? Am J Cancer Res 4(4):353

    PubMed  PubMed Central  Google Scholar 

  7. Barton VN, D’Amato NC, Gordon MA, Christenson JL, Elias A, Richer JK (2015) Androgen receptor biology in triple negative breast cancer: a case for classification as AR+ or quadruple negative disease. Horm Cancer 6(5–6):206. https://doi.org/10.1007/S12672-015-0232-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kotsopoulos J, Narod SA (2012) Androgens and breast cancer. Steroids 77(1–2):1–9. https://doi.org/10.1016/J.STEROIDS.2011.10.002

    Article  CAS  PubMed  Google Scholar 

  9. Koleckova M, Janikova M, Kolar Z (2018) MicroRNAs in triple-negative breast cancer. Neoplasma 65(1):1–13. https://doi.org/10.4149/NEO_2018_170115N36

    Article  CAS  PubMed  Google Scholar 

  10. Zhang X et al (2020) Role of non-coding RNAs and RNA modifiers in cancer therapy resistance. Mol Cancer 19(1):1–26. https://doi.org/10.1186/S12943-020-01171-Z

    Article  PubMed  PubMed Central  Google Scholar 

  11. Thomson JM, Newman M, Parker JS, Morin-Kensicki EM, Wright T, Hammond SM (2006) Extensive post-transcriptional regulation of microRNAs and its implications for cancer. Genes Dev 20(16):2202–2207. https://doi.org/10.1101/gad.1444406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Chi Y, Wang D, Wang J, Yu W, Yang J (2019) Long non-coding RNA in the pathogenesis of cancers. Cells 8(9):1–44. https://doi.org/10.3390/cells8091015

    Article  CAS  Google Scholar 

  13. Akhade VS, Pal D, Kanduri C (2017) Long noncoding RNA: genome organization and mechanism of action. Adv Exp Med Biol 1008:47–74. https://doi.org/10.1007/978-981-10-5203-3_2

    Article  CAS  PubMed  Google Scholar 

  14. Ll C (2020) The expanding regulatory mechanisms and cellular functions of circular RNAs. Nat Rev Mol Cell Biol 21(8):475–490. https://doi.org/10.1038/S41580-020-0243-Y

    Article  Google Scholar 

  15. Hu J et al (2014) Identification of microRNA-93 as a functional dysregulated miRNA in triple-negative breast cancer. Tumor Biol 36(1):251–258. https://doi.org/10.1007/S13277-014-2611-8

    Article  Google Scholar 

  16. Deng H et al (2016) Role of long non-coding RNA in tumor drug resistance. Tumour Biol 37(9):11623–11631. https://doi.org/10.1007/S13277-016-5125-8

    Article  CAS  PubMed  Google Scholar 

  17. Xia M, Zu X, Chen Z, Wen G, Zhong J (2021) Noncoding RNAs in triple negative breast cancer: mechanisms for chemoresistance. Cancer Lett 523:100–110. https://doi.org/10.1016/j.canlet.2021.09.038

    Article  CAS  PubMed  Google Scholar 

  18. Abotaleb M et al (2018) Chemotherapeutic agents for the treatment of metastatic breast cancer: an update. Biomed Pharmacother 101:458–477. https://doi.org/10.1016/J.BIOPHA.2018.02.108

    Article  CAS  PubMed  Google Scholar 

  19. Tan X et al (2014) miR-638 mediated regulation of BRCA1 affects DNA repair and sensitivity to UV and cisplatin in triple-negative breast cancer. Breast Cancer Res 16(1):1–14. https://doi.org/10.1186/S13058-014-0435-5/FIGURES/5

    Article  CAS  Google Scholar 

  20. Wang B, Zhang Y, Ye M, Wu J, Ma L, Chen H (2019) Cisplatin-resistant MDA-MB-231 Cell-derived exosomes increase the resistance of recipient cells in an exosomal miR-423-5p-dependent manner. Curr Drug Metab 20(10):804–814. https://doi.org/10.2174/1389200220666190819151946

    Article  CAS  PubMed  Google Scholar 

  21. Sha LY et al (2016) MiR-18a upregulation decreases Dicer expression and confers paclitaxel resistance in triple negative breast cancer. Eur Rev Med Pharmacol Sci 20(11):2201–2208

    PubMed  Google Scholar 

  22. Ouyang M et al (2014) MicroRNA profiling implies new markers of chemoresistance of triple-negative breast cancer. PLoS ONE. https://doi.org/10.1371/JOURNAL.PONE.0096228

    Article  PubMed  PubMed Central  Google Scholar 

  23. Wang M et al (2018) miR-485-5p suppresses breast cancer progression and chemosensitivity by targeting survivin. Biochem Biophys Res Commun 501(1):48–54. https://doi.org/10.1016/J.BBRC.2018.04.129

    Article  CAS  PubMed  Google Scholar 

  24. Kolacinska A et al (2014) Association of microRNAs and pathologic response to preoperative chemotherapy in triple negative breast cancer: preliminary report. Mol Biol Rep 41(5):2851–2857. https://doi.org/10.1007/S11033-014-3140-7/FIGURES/2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Sueta A et al (2021) Exosomal miRNA profiles of triple-negative breast cancer in neoadjuvant treatment. Oncol Lett 22(6):1–10. https://doi.org/10.3892/OL.2021.13080/HTML

    Article  Google Scholar 

  26. Bhardwaj A et al (2017) Regulation of miRNA-29c and its downstream pathways in preneoplastic progression of triple-negative breast cancer. Oncotarget 8(12):19645–19660. https://doi.org/10.18632/oncotarget.14902

    Article  PubMed  PubMed Central  Google Scholar 

  27. Chen H, Pan H, Qian Y, Zhou W, Liu X (2018) MiR-25-3p promotes the proliferation of triple negative breast cancer by targeting BTG2. Mol Cancer 17(1):1–11. https://doi.org/10.1186/s12943-017-0754-0

    Article  CAS  Google Scholar 

  28. Liu P et al (2015) miR-26a suppresses tumour proliferation and metastasis by targeting metadherin in triple negative breast cancer. Cancer Lett 357(1):384–392. https://doi.org/10.1016/J.CANLET.2014.11.050

    Article  CAS  PubMed  Google Scholar 

  29. Li W, Liu C, Zhao C, Zhai L, Lv S (2016) Downregulation of β3 integrin by miR-30a-5p modulates cell adhesion and invasion by interrupting Erk/Ets-1 network in triple-negative breast cancer. Int J Oncol 48(3):1155–1164. https://doi.org/10.3892/IJO.2016.3319

    Article  CAS  PubMed  Google Scholar 

  30. Adams BD, Wali VB, Cheng CJ, Inukai S, Booth CJ, Agarwal S, Rimm DL, Győrffy B, Santarpia L, Pusztai L, MarkSaltzman W, Slack FJ (2016) miR-34a silences c-SRC to attenuate tumor growth in triple negative breast cancer. Cancer Res 76(4):927–939. https://doi.org/10.1158/0008-5472.CAN-15-2321

    Article  CAS  PubMed  Google Scholar 

  31. Bayraktar R et al (2018) Dual suppressive effect of miR-34a on the FOXM1/eEF2-kinase axis regulates triple-negative breast cancer growth and invasion. Clin Cancer Res 24(17):4225–4241. https://doi.org/10.1158/1078-0432.CCR-17-1959

    Article  CAS  PubMed  Google Scholar 

  32. Luo L-j et al (2016) MiR-31 inhibits migration and invasion by targeting SATB2 in triple negative breast cancer. Gene 594(1):47–58. https://doi.org/10.1016/J.GENE.2016.08.057

    Article  CAS  PubMed  Google Scholar 

  33. Liu X et al (2015) MicroRNA-101 inhibits cell progression and increases paclitaxel sensitivity by suppressing MCL-1 expression in human triplenegative breast cancer. Oncotarget 6(24):20070–20083. https://doi.org/10.18632/oncotarget.4039

    Article  PubMed  PubMed Central  Google Scholar 

  34. Liu P et al (2016) mir-101-3p is a key regulator of tumor metabolism in triple negative breast cancer targeting AMPK. Oncotarget 7(23):35188. https://doi.org/10.18632/ONCOTARGET.9072

    Article  PubMed  PubMed Central  Google Scholar 

  35. Wang Z, Wang X (2020) miR-122-5p promotes aggression and epithelial-mesenchymal transition in triple-negative breast cancer by suppressing charged multivesicular body protein 3 through mitogen-activated protein kinase signaling. J Cell Physiol 235(3):2825–2835. https://doi.org/10.1002/JCP.29188

    Article  CAS  PubMed  Google Scholar 

  36. Nie J et al (2019) MiR-125b regulates the proliferation and metastasis of triple negative breast cancer cells via the Wnt/β-catenin pathway and EMT. Biosci Biotechnol Biochem 83(6):1062–1071. https://doi.org/10.1080/09168451.2019.1584521

    Article  CAS  PubMed  Google Scholar 

  37. Chen X et al (2018) microRNA-130a suppresses breast cancer cell migration and invasion by targeting FOSL1 and upregulating ZO-1. J Cell Biochem 119(6):4945–4956. https://doi.org/10.1002/JCB.26739

    Article  CAS  PubMed  Google Scholar 

  38. Poodineh J, Sirati-Sabet M, Rajabibazl M, Mohammadi-Yeganeh S (2020) MiR-130a-3p blocks Wnt signaling cascade in the triple-negative breast cancer by targeting the key players at multiple points. Heliyon 6(11):e05434. https://doi.org/10.1016/J.HELIYON.2020.E05434

    Article  PubMed  PubMed Central  Google Scholar 

  39. O’Brien K et al (2015) miR-134 in extracellular vesicles reduces triple-negative breast cancer aggression and increases drug sensitivity. Oncotarget 6(32):32774–32789. https://doi.org/10.18632/ONCOTARGET.5192

    Article  PubMed  PubMed Central  Google Scholar 

  40. Yan M et al (2016) miR-136 suppresses tumor invasion and metastasis by targeting RASAL2 in triple-negative breast cancer. Oncol Rep 36(1):65. https://doi.org/10.3892/OR.2016.4767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Zheng M, Wu Z, Wu A, Huang Z, He N, Xie X (2016) MiR-145 promotes TNF-α-induced apoptosis by facilitating the formation of RIP1-FADDcaspase-8 complex in triple-negative breast cancer. Tumor Biol 37(7):8599–8607. https://doi.org/10.1007/S13277-015-4631-4

    Article  CAS  Google Scholar 

  42. Garcia AI et al (2011) Down-regulation of BRCA1 expression by miR-146a and miR-146b-5p in triple negative sporadic breast cancers. EMBO Mol Med 3(5):279–290. https://doi.org/10.1002/EMMM.201100136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Kong W et al (2014) Upregulation of miRNA-155 promotes tumour angiogenesis by targeting VHL and is associated with poor prognosis and triple-negative breast cancer. Oncogene 33(6):679–689. https://doi.org/10.1038/onc.2012.636

    Article  CAS  PubMed  Google Scholar 

  44. Liu H et al (2013) Expression and regulatory function of miRNA-182 in triple-negative breast cancer cells through its targeting of profilin 1. Tumor Biol 34(3):1713–1722. https://doi.org/10.1007/s13277-013-0708-0

    Article  CAS  Google Scholar 

  45. Chen J, Shin VY, Siu MT, Ho JCW, Cheuk I, Kwong A (2016) miR-199a-5p confers tumor-suppressive role in triple-negative breast cancer. BMC Cancer 16(1):1–12. https://doi.org/10.1186/S12885-016-2916-7/FIGURES/7

    Article  CAS  Google Scholar 

  46. Tsouko E, Wang J, Frigo DE, Aydogdu E, Williams C (2015) miR-200a inhibits migration of triple-negative breast cancer cells through direct repression of the EPHA2 oncogene. Carcinogenesis 36(9):1051–1060. https://doi.org/10.1093/carcin/bgv087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Rhodes LV et al (2015) Dual regulation by microRNA-200b-3p and microRNA-200b-5p in the inhibition of epithelial-to-mesenchymal transition in triple-negative breast cancer. Oncotarget 6(18):16638–16652. https://doi.org/10.18632/oncotarget.3184

    Article  PubMed  PubMed Central  Google Scholar 

  48. Ren Y et al (2014) MicroRNA-200c downregulates XIAP expression to suppress proliferation and promote apoptosis of triple-negative breast cancer cells. Mol Med Rep 10(1):315–321. https://doi.org/10.3892/mmr.2014.2222

    Article  CAS  PubMed  Google Scholar 

  49. Wang C, Zheng X, Shen C, Shi Y (2012) MicroRNA-203 suppresses cell proliferation and migration by targeting BIRC5 and LASP1 in human triple-negative breast cancer cells. J Exp Clin Cancer Res. https://doi.org/10.1186/1756-9966-31-58

    Article  PubMed  PubMed Central  Google Scholar 

  50. Wang J et al (2014) miR-206 inhibits cell migration through direct targeting of the actin-binding protein coronin 1C in triple-negative breast cancer. Mol Oncol 8(8):1690–1702. https://doi.org/10.1016/J.MOLONC.2014.07.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Xiao Y et al (2018) Integrin α5 down-regulation by miR-205 suppresses triple negative breast cancer stemness and metastasis by inhibiting the Src/Vav2/Rac1 pathway. Cancer Lett 433:199–209. https://doi.org/10.1016/J.CANLET.2018.06.037

    Article  CAS  PubMed  Google Scholar 

  52. Song G-q, Zhao Y (2015) MicroRNA-211, a direct negative regulator of CDC25B expression, inhibits triple-negative breast cancer cells’ growth and migration. Tumor Biol 36(7):5001–5009. https://doi.org/10.1007/s13277-015-3151-6

    Article  CAS  Google Scholar 

  53. Pan JK et al (2021) MiR-211 determines brain metastasis specificity through SOX11/NGN2 axis in triple-negative breast cancer. Oncogene 40(9):1737–1751. https://doi.org/10.1038/s41388-021-01654-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Chen LL, Zhang ZJ, Yi ZB, Li JJ (2017) MicroRNA-211–5p suppresses tumour cell proliferation, invasion, migration and metastasis in triple-negative breast cancer by directly targeting SETBP1. Br J Cancer 117(1):78–88. https://doi.org/10.1038/bjc.2017.150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Nassirpour R, Mehta PP, Baxi SM, Yin MJ (2013) miR-221 promotes tumorigenesis in human triple negative breast cancer cells. PLoS ONE 8(4):e62170. https://doi.org/10.1371/JOURNAL.PONE.0062170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Falkenberg N et al (2015) Secreted uPAR isoform 2 (uPAR7b) is a novel direct target of miR-221. Oncotarget 6(10):8103. https://doi.org/10.18632/ONCOTARGET.3516

    Article  PubMed  PubMed Central  Google Scholar 

  57. Liu S et al (2018) miR-221/222 activate the Wnt/β-catenin signaling to promote triple-negative breast cancer. J Mol Cell Biol 10(4):302–315. https://doi.org/10.1093/JMCB/MJY041

    Article  CAS  PubMed  Google Scholar 

  58. Sun X, Li Y, Zheng M, Zuo W, Zheng W (2016) MicroRNA-223 increases the sensitivity of triple-negative breast cancer stem cells to trail-induced apoptosis by targeting HAX-1. PLoS ONE 11(9):e0162754. https://doi.org/10.1371/JOURNAL.PONE.0162754

    Article  PubMed  PubMed Central  Google Scholar 

  59. Tian D, Luo L, Wang T, Qiao J (2021) MiR-296–3p inhibits cell proliferation by the SOX4-Wnt/β-catenin pathway in triple-negative breast cancer. J Biosci 46(4):1–16. https://doi.org/10.1007/S12038-021-00219-6

    Article  CAS  Google Scholar 

  60. Romero-Cordoba SL et al (2018) Loss of function of miR-342–3p results in MCT1 over-expression and contributes to oncogenic metabolic reprogramming in triple negative breast cancer. Sci Rep 8(1):1–16. https://doi.org/10.1038/s41598-018-29708-9

    Article  CAS  Google Scholar 

  61. Han J et al (2019) Overexpression of miR-361-5p in triple-negative breast cancer (TNBC) inhibits migration and invasion by targeting RQCD1 and inhibiting the EGFR/PI3K/Akt pathway. Bosn J Basic Med Sci 19(1):52. https://doi.org/10.17305/BJBMS.2018.3399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Browne G et al (2016) MicroRNA-378-mediated suppression of Runx1 alleviates the aggressive phenotype of triple-negative MDA-MB-231 human breast cancer cells. Tumor Biol 37(7):8825–8839. https://doi.org/10.1007/S13277-015-4710-6/FIGURES/7

    Article  CAS  Google Scholar 

  63. Maskey N et al (2017) MicroRNA-340 inhibits invasion and metastasis by downregulating ROCK1 in breast cancer cells. Oncol Lett 14(2):2261. https://doi.org/10.3892/OL.2017.6439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Wang Y, Zhang Z, Wang J (2018) MicroRNA-384 inhibits the progression of breast cancer by targeting ACVR1. Oncol Rep 39(6):2563–2574. https://doi.org/10.3892/OR.2018.6385/HTML

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Li Q, Liu J, Meng X, Pang R, Li J (2017) MicroRNA-454 may function as an oncogene via targeting AKT in triple negative breast cancer. J Biol Res 24(1):1–10. https://doi.org/10.1186/S40709-017-0067-X/FIGURES/6

    Article  Google Scholar 

  66. Li Z et al (2017) MicroRNA-455-3p promotes invasion and migration in triple negative breast cancer by targeting tumor suppressor EI24. Oncotarget 8(12):19455. https://doi.org/10.18632/ONCOTARGET.14307

    Article  PubMed  Google Scholar 

  67. Menbari MN et al (2020) miR-483-3p suppresses the proliferation and progression of human triple negative breast cancer cells by targeting the HDAC8>oncogene. J Cell Physiol 235(3):2631–2642. https://doi.org/10.1002/JCP.29167

    Article  CAS  PubMed  Google Scholar 

  68. Jia Z et al (2016) miR-490-3p inhibits the growth and invasiveness in triple-negative breast cancer by repressing the expression of TNKS2. Gene 593(1):41–47. https://doi.org/10.1016/J.GENE.2016.08.014

    Article  CAS  PubMed  Google Scholar 

  69. Li Y, Hua K, Jin J, Fang L (2021) miR-497 inhibits proliferation and invasion in triple-negative breast cancer cells via YAP1. Oncol Lett 22(2):1–10. https://doi.org/10.3892/OL.2021.12841/HTML

    Article  Google Scholar 

  70. Wang W, Zhang W, Wu J, Zhou Z, Ma J (2021) miR-522 regulates cell proliferation, migration, invasion capacities and acts as a potential biomarker to predict prognosis in triple-negative breast cancer. Clin Exp Med 2021:1–8. https://doi.org/10.1007/S10238-021-00757-1

    Article  Google Scholar 

  71. Wang LL et al (2020) Protective effect of hsa-miR-570-3p targeting CD274 on triple negative breast cancer by blocking PI3K/AKT/mTOR signaling pathway. Kaohsiung J Med Sci 36(8):581–591. https://doi.org/10.1002/KJM2.12212

    Article  CAS  PubMed  Google Scholar 

  72. Yao M, Wang S, Chen L, Wei B, Fu P (2021) Research on correlations of miR-585 expression with progression and prognosis of triple-negative breast cancer. Clin Exp Med 2021:1–7. https://doi.org/10.1007/S10238-021-00704-0

    Article  Google Scholar 

  73. Yan M et al (2020) MicroRNA-590–3p inhibits invasion and metastasis in triple-negative breast cancer by targeting Slug. Am J Cancer Res 10(3):965

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Zhang KJ et al (2020) MiR–574–5p attenuates proliferation, migration and EMT in triple–negative breast cancer cells by targeting BCL11A and SOX2 to inhibit the SKIL/TAZ/CTGF axis. Int J Oncol 56(5):1240–1251. https://doi.org/10.3892/IJO.2020.4995/HTML

    Article  CAS  PubMed  Google Scholar 

  75. Bayraktar R et al (2017) MicroRNA 603 acts as a tumor suppressor and inhibits triple-negative breast cancer tumorigenesis by targeting elongation factor 2 kinase. Oncotarget 8(7):11641. https://doi.org/10.18632/ONCOTARGET.14264

    Article  PubMed  Google Scholar 

  76. Liu C, Jiang Y, Han B (2020) miR-613 suppresses chemoresistance and stemness in triple-negative breast cancer by targeting FAM83A. Cancer Manag Res 12:12623. https://doi.org/10.2147/CMAR.S276316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Xiong H et al (2018) miR-613 inhibits cell migration and invasion by downregulating Daam1 in triple-negative breast cancer. Cell Signal 44:33–42. https://doi.org/10.1016/J.CELLSIG.2018.01.013

    Article  CAS  PubMed  Google Scholar 

  78. Lv ZD et al (2016) miR-655 suppresses epithelial-to-mesenchymal transition by targeting Prrx1 in triple-negative breast cancer. J Cell Mol Med 20(5):864–873. https://doi.org/10.1111/JCMM.12770

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Das SG et al (2016) miR-720 is a downstream target of an ADAM8-induced ERK signaling cascade that promotes the migratory and invasive phenotype of triple-negative breast cancer cells. Breast Cancer Res 18(1):1–19. https://doi.org/10.1186/S13058-016-0699-Z/FIGURES/9

    Article  Google Scholar 

  80. Li Y et al (2018) MiR-770 suppresses the chemo-resistance and metastasis of triple negative breast cancer via direct targeting of STMN1. Cell Death Dis 9(1):1–12. https://doi.org/10.1038/s41419-017-0030-7

    Article  CAS  Google Scholar 

  81. Wang C, Xu C, Niu R, Hu G, Gu Z, Zhuang Z (2019) MiR-890 inhibits proliferation and invasion and induces apoptosis in triple-negative breast cancer cells by targeting CD147. BMC Cancer 19(1):1–11. https://doi.org/10.1186/S12885-019-5796-9/FIGURES/5

    Article  Google Scholar 

  82. Nafea HM, Youness RA, Abou-Aisha K, Gad MZ (2021) 27P MiR-939-5p exhibits tumour suppressor activity and immune surveillance manipulation in triple-negative breast cancer. Ann Oncol 32:S11. https://doi.org/10.1016/J.ANNONC.2021.01.041

    Article  Google Scholar 

  83. Di Modica M et al (2017) Breast cancer-secreted miR-939 downregulates VE-cadherin and destroys the barrier function of endothelial monolayers. Cancer Lett 384:94–100. https://doi.org/10.1016/J.CANLET.2016.09.013

    Article  PubMed  Google Scholar 

  84. Hou L et al (2016) MiR-940 inhibited cell growth and migration in triple-negative breast cancer. Med Sci Monit 22:3666. https://doi.org/10.12659/MSM.897731

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Phan B et al (2016) Tumor suppressor role of microRNA-1296 in triple-negative breast cancer. Oncotarget 7(15):19519. https://doi.org/10.18632/ONCOTARGET.6961

    Article  PubMed  PubMed Central  Google Scholar 

  86. Zhao Z et al (2019) Transcriptional downregulation of miR-4306 serves as a new therapeutic target for triple negative breast cancer. Theranostics 9(5):1401. https://doi.org/10.7150/THNO.30701

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Chu J et al (2018) MiR-4319 suppress the malignancy of triple-negative breast cancer by regulating self-renewal and tumorigenesis of stem cells. Cell Physiol Biochem 48(2):593–604. https://doi.org/10.1159/000491888

    Article  CAS  PubMed  Google Scholar 

  88. Liu X, Wang J, Zhang G (2019) miR-4458 regulates cell proliferation and apoptosis through targeting SOCS1 in triple-negative breast cancer. J Cell Biochem 120(8):12943–12948. https://doi.org/10.1002/JCB.28565

    Article  CAS  PubMed  Google Scholar 

  89. Liang F, Fu X, Wang L (2019) miR-5590-3p-YY1 feedback loop promotes the proliferation and migration of triple-negative breast cancer cells. J Cell Biochem 120(10):18415–18424. https://doi.org/10.1002/JCB.29158

    Article  CAS  PubMed  Google Scholar 

  90. Collina F et al (2019) LncRNA HOTAIR up-regulation is strongly related with lymph nodes metastasis and LAR subtype of triple negative breast cancer. J Cancer 10(9):2018–2024. https://doi.org/10.7150/JCA.29670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Wang L et al (2018) Long non-coding RNA (LncRNA) RMST in triple-negative breast cancer (TNBC): expression analysis and biological roles research. J Cell Physiol 233(10):6603–6612. https://doi.org/10.1002/JCP.26311

    Article  CAS  PubMed  Google Scholar 

  92. Fu PF, Zheng X, Fan X, Lin AF (2019) Role of cytoplasmic lncRNAs in regulating cancer signaling pathways. J Zhejiang Univ Sci B 20(1):1. https://doi.org/10.1631/JZUS.B1800254

    Article  PubMed  PubMed Central  Google Scholar 

  93. Han J et al (2018) Knockdown of lncRNA H19 restores chemo-sensitivity in paclitaxel-resistant triple-negative breast cancer through triggering apoptosis and regulating Akt signaling pathway. Toxicol Appl Pharmacol 359:55–61. https://doi.org/10.1016/J.TAAP.2018.09.018

    Article  CAS  PubMed  Google Scholar 

  94. Wu J et al (2019) Downregulation of long noncoding RNA HCP5 contributes to cisplatin resistance in human triple-negative breast cancer via regulation of PTEN expression. Biomed Pharmacother 115:108869. https://doi.org/10.1016/J.BIOPHA.2019.108869

    Article  CAS  PubMed  Google Scholar 

  95. Du C, Wang Y, Zhang Y, Zhang J, Zhang L, Li J (2020) LncRNA DLX6-AS1 contributes to epithelial-mesenchymal transition and cisplatin resistance in triple-negative breast cancer via modulating Mir-199b-5p/Paxillin axis. Cell Transplant. https://doi.org/10.1177/0963689720929983

    Article  PubMed  PubMed Central  Google Scholar 

  96. Yan H et al (2021) Cisplatin induces pyroptosis via activation of MEG3/NLRP3/caspase-1/GSDMD pathway in triple-negative breast cancer. Int J Biol Sci 17(10):2606. https://doi.org/10.7150/IJBS.60292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Gooding AJ, Zhang B, Gunawardane L, Beard A, Valadkhan S, Schiemann WP (2019) The lncRNA BORG facilitates the survival and chemoresistance of triple-negative breast cancers. Oncogene 38(12):2020–2041. https://doi.org/10.1038/S41388-018-0586-4

    Article  CAS  PubMed  Google Scholar 

  98. Tang L et al (2020) DCST1-AS1 promotes TGF-β-induced epithelial-mesenchymal transition and enhances chemoresistance in triple-negative breast cancer cells via ANXA1. Front Oncol 10:280. https://doi.org/10.3389/FONC.2020.00280/BIBTEX

    Article  PubMed  PubMed Central  Google Scholar 

  99. Wang Q, Li C, Tang P, Ji R, Chen S, Wen J (2018) A minimal lncRNA-mRNA signature predicts sensitivity to neoadjuvant chemotherapy in triple-negative breast cancer. Cell Physiol Biochem 48(6):2539–2548. https://doi.org/10.1159/000492698

    Article  CAS  PubMed  Google Scholar 

  100. Shaath H, Vishnubalaji R, Elango R, Khattak S, Alajez NM (2021) Single-cell long noncoding RNA (lncRNA) transcriptome implicates MALAT1 in triple-negative breast cancer (TNBC) resistance to neoadjuvant chemotherapy. Cell Death Discov 7(1):1–14. https://doi.org/10.1038/s41420-020-00383-y

    Article  CAS  Google Scholar 

  101. Zuo Y, Li Y, Zhou Z, Ma M, Fu K (2017) Long non-coding RNA MALAT1 promotes proliferation and invasion via targeting miR-129-5p in triple-negative breast cancer. Biomed Pharmacother 95(September):922–928. https://doi.org/10.1016/j.biopha.2017.09.005

    Article  CAS  PubMed  Google Scholar 

  102. Wang K, Li X, Song C, Li M (2018) LncRNA AWPPH promotes the growth of triple-negative breast cancer by up-regulating frizzled homolog 7 (FZD7). Biosci Rep. https://doi.org/10.1042/BSR20181223

  103. Luo L et al (2018) LINC01638 lncRNA activates MTDH-Twist1 signaling by preventing SPOP-mediated c-Myc degradation in triple-negative breast cancer. Oncogene 37(47):6166–6179. https://doi.org/10.1038/S41388-018-0396-8

    Article  CAS  PubMed  Google Scholar 

  104. Eades G, Wolfson B, Zhang Y, Li Q, Yao Y, Zhou Q (2015) lincRNA-RoR and miR-145 regulate invasion in triple-negative breast cancer via targeting ARF6. Mol Cancer Res 13(2):330–338. https://doi.org/10.1158/1541-7786.MCR-14-0251

    Article  CAS  PubMed  Google Scholar 

  105. Li S, Zhou J, Wang Z, Wang P, Gao X, Wang Y (2018) Long noncoding RNA GAS5 suppresses triple negative breast cancer progression through inhibition of proliferation and invasion by competitively binding miR-196a-5p. Biomed Pharmacother 104:451–457. https://doi.org/10.1016/J.BIOPHA.2018.05.056

    Article  CAS  PubMed  Google Scholar 

  106. Yang J, Meng X, Yu Y, Pan L, Zheng Q, Lin W (2019) LncRNA POU3F3 promotes proliferation and inhibits apoptosis of cancer cells in triple-negative breast cancer by inactivating caspase 9. Biosci Biotechnol Biochem 83(6):1117–1123. https://doi.org/10.1080/09168451.2019.1588097

    Article  CAS  PubMed  Google Scholar 

  107. Zhang K et al (2018) AFAP1-AS1 promotes epithelial-mesenchymal transition and tumorigenesis through Wnt/β-catenin signaling pathway in triple-negative breast cancer. Front Pharmacol. https://doi.org/10.3389/FPHAR.2018.01248

    Article  PubMed  PubMed Central  Google Scholar 

  108. Song X, Liu Z, Yu Z (2019) LncRNA NEF is downregulated in triple negative breast cancer and correlated with poor prognosis. Acta Biochim Biophys Sin (Shanghai) 51(4):386–392. https://doi.org/10.1093/ABBS/GMZ021

    Article  CAS  Google Scholar 

  109. Yu F, Wang L, Zhang B (2019) Long non-coding RNA DRHC inhibits the proliferation of cancer cells in triple negative breast cancer by downregulating long non-coding RNA HOTAIR. Oncol Lett 18(4):3817–3822. https://doi.org/10.3892/OL.2019.10683

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Shin VY et al (2019) Long non-coding RNA NEAT1 confers oncogenic role in triple-negative breast cancer through modulating chemoresistance and cancer stemness. Cell Death Dis. https://doi.org/10.1038/S41419-019-1513-5

    Article  PubMed  PubMed Central  Google Scholar 

  111. Shi F, Xiao F, Ding P, Qin H, Huang R (2016) Long noncoding RNA highly up-regulated in liver cancer predicts unfavorable outcome and regulates metastasis by MMPs in triple-negative breast cancer. Arch Med Res 47(6):446–453. https://doi.org/10.1016/J.ARCMED.2016.11.001

    Article  CAS  PubMed  Google Scholar 

  112. Zhang Y et al (2016) Long noncoding RNA LINP1 regulates repair of DNA double-strand breaks in triple-negative breast cancer. Nat Struct Mol Biol 23(6):522–530. https://doi.org/10.1038/NSMB.3211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Lin A et al (2016) The LINK-A lncRNA activates normoxic HIF1α signalling in triple-negative breast cancer. Nat Cell Biol 18(2):213–224. https://doi.org/10.1038/NCB3295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Augoff K, McCue B, Plow EF, Sossey-Alaoui K (2012) MiR-31 and its host gene lncRNA LOC554202 are regulated by promoter hypermethylation in triple-negative breast cancer. Mol Cancer 11(1):1–13. https://doi.org/10.1186/1476-4598-11-5/FIGURES/5

    Article  Google Scholar 

  115. Niu L, Fan Q, Yan M, Wang L (2019) LncRNA NRON down-regulates lncRNA snaR and inhibits cancer cell proliferation in TNBC. Biosci Rep 39(5):20190468. https://doi.org/10.1042/BSR20190468

    Article  Google Scholar 

  116. Wang N, Hou M, Zhan Y, Sheng X (2019) LncRNA PTCSC3 inhibits triple-negative breast cancer cell proliferation by downregulating lncRNA H19. J Cell Biochem 120(9):15083–15088. https://doi.org/10.1002/JCB.28769

    Article  CAS  PubMed  Google Scholar 

  117. Youness RA, Hafez HM, Khallaf E, Assal RA, Abdel Motaal A, Gad MZ (2019) The long noncoding RNA sONE represses triple-negative breast cancer aggressiveness through inducing the expression of miR-34a, miR-15a, miR-16, and let-7a. J Cell Physiol 234(11):20286–20297. https://doi.org/10.1002/JCP.28629

    Article  CAS  PubMed  Google Scholar 

  118. Liu L, Yu D, Shi H, Li J, Meng L (2017) Reduced lncRNA Aim enhances the malignant invasion of triple-negative breast cancer cells mainly by activating Wnt/β-catenin/mTOR/PI3K signaling. Pharmazie 72(10):599–603. https://doi.org/10.1691/PH.2017.7547

    Article  CAS  PubMed  Google Scholar 

  119. Xu ST et al (2017) Long non-coding RNA ANRIL promotes carcinogenesis via sponging miR-199a in triple-negative breast cancer. Biomed Pharmacother 96:14–21. https://doi.org/10.1016/J.BIOPHA.2017.09.107

    Article  PubMed  Google Scholar 

  120. Sha S, Yuan D, Liu Y, Han B, Zhong N (2017) Targeting long non-coding RNA DANCR inhibits triple negative breast cancer progression. Biol Open 6(9):1310–1316. https://doi.org/10.1242/BIO.023135/256610/AM/TARGETING-LONG-NON-CODING-RNA-DANCR-INHIBITS

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Mou E, Wang H (2019) LncRNA LUCAT1 facilitates tumorigenesis and metastasis of triple-negative breast cancer through modulating MIR-5702. Biosci Rep 39(9):1–12. https://doi.org/10.1042/BSR20190489/220449

    Article  Google Scholar 

  122. Chen FY, Zhou ZY, Zhang KJ, Pang J, Wang SM (2020) Long non-coding RNA MIR100HG promotes the migration, invasion and proliferation of triple-negative breast cancer cells by targeting the miR-5590-3p/OTX1 axis. Cancer Cell Int 20(1):1–15. https://doi.org/10.1186/S12935-020-01580-6/FIGURES/7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Wang OC et al (2017) C-MYC-induced upregulation of lncRNA SNHG12 regulates cell proliferation, apoptosis and migration in triple-negative breast cancer. Am J Transl Res 9(2):533

    PubMed  PubMed Central  Google Scholar 

  124. Lee J et al (2016) Long noncoding RNA snaR regulates proliferation, migration and invasion of triple-negative breast cancer cells. Anticancer Res 36(12):6289–6295. https://doi.org/10.21873/anticanres.11224

    Article  CAS  PubMed  Google Scholar 

  125. Wang X et al (2019) Long noncoding RNA Linc00339 promotes triple-negative breast cancer progression through miR-377-3p/HOXC6 signaling pathway. J Cell Physiol 234(8):13303–13317. https://doi.org/10.1002/JCP.28007

    Article  CAS  PubMed  Google Scholar 

  126. Shen X, Zhong J, Yu P, Zhao Q, Huang T (2019) YY1-regulated LINC00152 promotes triple negative breast cancer progression by affecting on stability of PTEN protein. Biochem Biophys Res Commun 509(2):448–454. https://doi.org/10.1016/J.BBRC.2018.12.074

    Article  CAS  PubMed  Google Scholar 

  127. Wu J et al (2018) Linc00152 promotes tumorigenesis by regulating DNMTs in triple-negative breast cancer. Biomed Pharmacother 97:1275–1281. https://doi.org/10.1016/J.BIOPHA.2017.11.055

    Article  CAS  PubMed  Google Scholar 

  128. Li Y et al (2020) LncRNA H19 promotes triple-negative breast cancer cells invasion and metastasis through the p53/TNFAIP8 pathway. Cancer Cell Int 20(1):1–14. https://doi.org/10.1186/s12935-020-01261-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Yang F et al (2018) An androgen receptor negatively induced long non-coding RNA ARNILA binding to miR-204 promotes the invasion and metastasis of triple-negative breast cancer. Cell Death Differ 25(12):2209–2220. https://doi.org/10.1038/s41418-018-0123-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Dong F et al (2020) M2 macrophage-induced lncRNA PCAT6 facilitates tumorigenesis and angiogenesis of triple-negative breast cancer through modulation of VEGFR2. Cell Death Dis 11(9):1–14. https://doi.org/10.1038/s41419-020-02926-8

    Article  CAS  Google Scholar 

  131. Tao W, Sun W, Zhu H, Zhang J (2018) Knockdown of long non-coding RNA TP73-AS1 suppresses triple negative breast cancer cell vasculogenic mimicry by targeting miR-490-3p/TWIST1 axis. Biochem Biophys Res Commun 504(4):629–634. https://doi.org/10.1016/J.BBRC.2018.08.122

    Article  CAS  PubMed  Google Scholar 

  132. Wang L et al (2019) LncRNA HCP5 promotes triple negative breast cancer progression as a ceRNA to regulate BIRC3 by sponging miR-219a-5p. Cancer Med 8(9):4389–4403. https://doi.org/10.1002/CAM4.2335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Wang J et al (2019) LncRNA WT1-AS inhibits triple-negative breast cancer cell migration and invasion by downregulating transforming growth factor β1. Cancer Biother Radiopharm 34(10):671–675. https://doi.org/10.1089/CBR.2019.2925

    Article  CAS  PubMed  Google Scholar 

  134. Tian Y, Xia S, Ma M, Zuo Y (2019) LINC00096 promotes the proliferation and invasion by sponging miR-383-5p and regulating RBM3 expression in triple-negative breast cancer. Onco Targets Ther 12:10569–10578. https://doi.org/10.2147/OTT.S229659

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Li P, Zhou B, Lv Y, Qian Q (2019) LncRNA HEIH regulates cell proliferation and apoptosis through miR-4458/SOCS1 axis in triple-negative breast cancer. Hum Cell 32(4):522–528. https://doi.org/10.1007/S13577-019-00273-1

    Article  CAS  PubMed  Google Scholar 

  136. Han C, Li X, Fan Q, Liu G, Yin J (2019) CCAT1 promotes triple-negative breast cancer progression by suppressing miR-218/ZFX signaling. Aging (Albany NY) 11(14):4858–4875. https://doi.org/10.18632/AGING.102080

    Article  CAS  Google Scholar 

  137. Wang Y et al (2020) LncRNA-encoded polypeptide ASRPS inhibits triple-negative breast cancer angiogenesis. J Exp Med. https://doi.org/10.1084/JEM.20190950/132618

    Article  PubMed  PubMed Central  Google Scholar 

  138. Kong Y, Geng C, Dong Q (2019) LncRNA PAPAS may promote triple-negative breast cancer by downregulating miR-34a. J Int Med Res 47(8):3709–3718. https://doi.org/10.1177/0300060519850724

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Wei M, Liu L, Wang Z (2019) Long non-coding RNA heart and neural crest derivatives expressed 2-antisense RNA 1 overexpression inhibits the proliferation of cancer cells by reducing RUNX2 expression in triple-negative breast cancer. Oncol Lett 18(6):6775–6780. https://doi.org/10.3892/OL.2019.11001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Tu Z, Schmöllerl J, Cuiffo BG, Karnoub AE (2019) Microenvironmental regulation of long noncoding RNA LINC01133 promotes cancer stem cell-like phenotypic traits in triple-negative breast cancers. Stem Cells 37(10):1281–1292. https://doi.org/10.1002/STEM.3055

    Article  CAS  PubMed  Google Scholar 

  141. Vidovic D et al (2020) ALDH1A3-regulated long non-coding RNA NRAD1 is a potential novel target for triple-negative breast tumors and cancer stem cells. Cell Death Differ 27(1):363–378. https://doi.org/10.1038/S41418-019-0362-1

    Article  CAS  PubMed  Google Scholar 

  142. Mou ZL, Xu YY, Liu GX, Wang DM, Zhang H, Wang G (2019) LINC01096 knockdown inhibits progression of triple-negative breast cancer by increasing miR-3130-3p. Eur Rev Med Pharmacol Sci 23(17):7445–7456. https://doi.org/10.26355/EURREV_201909_18854

    Article  PubMed  Google Scholar 

  143. Zhang H et al (2019) Epigenetic regulation of NAMPT by NAMPT-AS drives metastatic progression in triple-negative breast cancer. Cancer Res 79(13):3347–3359. https://doi.org/10.1158/0008-5472.CAN-18-3418

    Article  CAS  PubMed  Google Scholar 

  144. Fu J et al (2019) LncRNA MIR503HG inhibits cell migration and invasion via miR-103/OLFM4 axis in triple negative breast cancer. J Cell Mol Med 23(7):4738–4745. https://doi.org/10.1111/JCMM.14344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Jin X et al (2019) The endogenous retrovirus-derived long noncoding RNA TROJAN promotes triple-negative breast cancer progression via ZMYND8 degradation. Sci Adv. https://doi.org/10.1126/SCIADV.AAT9820

    Article  PubMed  PubMed Central  Google Scholar 

  146. Zhang G et al (2019) Long non-coding RNA ZEB2-AS1 promotes the proliferation, metastasis and epithelial mesenchymal transition in triple-negative breast cancer by epigenetically activating ZEB2. J Cell Mol Med 23(5):3271–3279. https://doi.org/10.1111/JCMM.14213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Wang Y, Zhang G, Han J (2019) HIF1A-AS2 predicts poor prognosis and regulates cell migration and invasion in triple-negative breast cancer. J Cell Biochem 120(6):10513–10518. https://doi.org/10.1002/JCB.28337

    Article  CAS  PubMed  Google Scholar 

  148. Beltrán-Anaya FO et al (2019) Expression of long non-coding RNA ENSG00000226738 (LncKLHDC7B) is enriched in the immunomodulatory triple-negative breast cancer subtype and its alteration promotes cell migration, invasion, and resistance to cell death. Mol Oncol 13(4):909–927. https://doi.org/10.1002/1878-0261.12446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Jadaliha M et al (2018) A natural antisense lncRNA controls breast cancer progression by promoting tumor suppressor gene mRNA stability. PLoS Genet. https://doi.org/10.1371/JOURNAL.PGEN.1007802

    Article  PubMed  PubMed Central  Google Scholar 

  150. Zhang Y, Zhang H, Kang H, Huo W, Zhou Y, Zhang Y (2019) Knockdown of long non-coding RNA HOST2 inhibits the proliferation of triple negative breast cancer via regulation of the let-7b/CDK6 axis. Int J Mol Med 43(2):1049–1057. https://doi.org/10.3892/IJMM.2018.3995

    Article  CAS  PubMed  Google Scholar 

  151. Tang T et al (2018) Long non-coding RNA TUG1 sponges miR-197 to enhance cisplatin sensitivity in triple negative breast cancer. Biomed Pharmacother 107:338–346. https://doi.org/10.1016/J.BIOPHA.2018.07.076

    Article  CAS  PubMed  Google Scholar 

  152. Tang J et al (2018) LncRNA PVT1 regulates triple-negative breast cancer through KLF5/beta-catenin signaling. Oncogene 37(34):4723–4734. https://doi.org/10.1038/S41388-018-0310-4

    Article  CAS  PubMed  Google Scholar 

  153. Ps W et al (2018) A novel long non-coding RNA linc-ZNF469-3 promotes lung metastasis through miR-574-5p-ZEB1 axis in triple negative breast cancer. Oncogene 37(34):4662–4678. https://doi.org/10.1038/S41388-018-0293-1

    Article  Google Scholar 

  154. Aram R, Dotan I, Hotz-Wagenblatt A, Canaani D (2017) Identification of a novel metastasis inducing lncRNA which suppresses the KAI1/CD82 metastasis suppressor gene and is upregulated in triple-negative breast cancer. Oncotarget 8(40):67538–67552. https://doi.org/10.18632/ONCOTARGET.18733

    Article  PubMed  PubMed Central  Google Scholar 

  155. Deng C et al (2020) A long non-coding RNA OLBC15 promotes triple-negative breast cancer progression via enhancing ZNF326 degradation. J Clin Lab Anal 34(8):e23304. https://doi.org/10.1002/JCLA.23304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Zheng S et al (2020) Long non-coding RNA HUMT hypomethylation promotes lymphangiogenesis and metastasis via activating FOXK1 transcription in triple-negative breast cancer. J Hematol Oncol 13(1):1–15. https://doi.org/10.1186/S13045-020-00852-Y/FIGURES/7

    Article  Google Scholar 

  157. Wang X, Li S, Xiao H, Deng X (2020) Serum lncRNA TINCR serve as a novel biomarker for predicting the prognosis in triple-negative breast cancer. Technol Cancer Res Treat. https://doi.org/10.1177/1533033820965574

    Article  PubMed  PubMed Central  Google Scholar 

  158. Chen J et al (2020) Long non-coding RNA LINC-PINT attenuates paclitaxel resistance in triple-negative breast cancer cells via targeting the RNA-binding protein NONO. Acta Biochim Biophys Sin (Shanghai) 52(8):801–809. https://doi.org/10.1093/ABBS/GMAA072

    Article  CAS  Google Scholar 

  159. Li S, Wu D, Jia H, Zhang Z (2020) Long non-coding RNA LRRC75A-AS1 facilitates triple negative breast cancer cell proliferation and invasion via functioning as a ceRNA to modulate BAALC. Cell Death Dis 11(8):1–12. https://doi.org/10.1038/s41419-020-02821-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Yang X, Yang Y, Qian X, Xu X, Lv P (2021) Long non-coding RNA LINC01559 serves as a competing endogenous RNA accelerating triple-negative breast cancer progression. Biomed J. https://doi.org/10.1016/J.BJ.2021.05.002

    Article  PubMed  PubMed Central  Google Scholar 

  161. Barton M, Santucci-Pereira J, Vaccaro OG, Nguyen T, Su Y, Russo J (2019) BC200 overexpression contributes to luminal and triple negative breast cancer pathogenesis. BMC Cancer 19(1):1–17. https://doi.org/10.1186/S12885-019-6179-Y/FIGURES/9

    Article  CAS  Google Scholar 

  162. de Bastos DR, Nagai MA (2020) In silico analyses identify lncRNAs: WDFY3-AS2, BDNF-AS and AFAP1-AS1 as potential prognostic factors for patients with triple-negative breast tumors. PLoS ONE 15(5):e0232284. https://doi.org/10.1371/JOURNAL.PONE.0232284

    Article  Google Scholar 

  163. Xu Z et al (2020) Long non-coding RNA CCAT2 promotes oncogenesis in triple-negative breast cancer by regulating stemness of cancer cells. Pharmacol Res 152:104628. https://doi.org/10.1016/J.PHRS.2020.104628

    Article  CAS  PubMed  Google Scholar 

  164. Tang L, Chen Y, Tang X, Wei D, Xu X, Yan F (2020) Long noncoding RNA DCST1-AS1 promotes cell proliferation and metastasis in triple-negative breast cancer by forming a positive regulatory loop with miR-873-5p and MYC. J Cancer 11(2):311. https://doi.org/10.7150/JCA.33982

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Jiang D, Wang C, He J (2020) Long non-coding RNA DGCR5 incudes tumorigenesis of triple-negative breast cancer by affecting Wnt/β-catenin signaling pathway. J BUON 25(2):702–708

    PubMed  Google Scholar 

  166. Han C, Fu Y, Zeng N, Yin J, Li Q (2020) LncRNA FAM83H-AS1 promotes triple-negative breast cancer progression by regulating the miR-136-5p/metadherin axis. Aging (Albany NY) 12(4):3594. https://doi.org/10.18632/AGING.102832

    Article  CAS  Google Scholar 

  167. Fan H et al (2020) LncRNA LINC00173 enhances triple-negative breast cancer progression by suppressing miR-490-3p expression. Biomed Pharmacother 125:109987. https://doi.org/10.1016/J.BIOPHA.2020.109987

    Article  CAS  PubMed  Google Scholar 

  168. Guo S, Jian L, Tao K, Chen C, Yu H, Liu S (2019) Novel breast-specific long non-coding RNA LINC00993 acts as a tumor suppressor in triple-negative breast cancer. Front Oncol 9:1325. https://doi.org/10.3389/FONC.2019.01325/BIBTEX

    Article  PubMed  PubMed Central  Google Scholar 

  169. Yang Z, Ding H, Pan Z, Li H, Ding J, Chen Q (2021) YY1-inudced activation of lncRNA DUXAP8 promotes proliferation and suppresses apoptosis of triple negative breast cancer cells through upregulating SAPCD2. Cancer Bio Ther 22(3):216–224. https://doi.org/10.1080/15384047.2021.1881201

    Article  CAS  Google Scholar 

  170. Wang P, Liu GZ, Wang JF, Du YY (2020) SNHG3 silencing suppresses the malignant development of triple-negative breast cancer cells by regulating miRNA-326/integrin α5 axis and inactivating Vav2/Rac1 signaling pathway. Eur Rev Med Pharmacol Sci 24(10):5481–5492. https://doi.org/10.26355/EURREV_202005_21333

    Article  CAS  PubMed  Google Scholar 

  171. Fang X, Zhang J, Li C, Liu J, Shi Z, Zhou P (2020) Long non-coding RNA SNHG22 facilitates the malignant phenotypes in triple-negative breast cancer via sponging miR-324-3p and upregulating SUDS3. Cancer Cell Int 20(1):1–12. https://doi.org/10.1186/S12935-020-01321-9/FIGURES/6

    Article  Google Scholar 

  172. Liu X, Song J, Kang Y, Wang Y, Chen A (2020) Long noncoding RNA SOX21-AS1 regulates the progression of triple-negative breast cancer through regulation of miR-520a-5p/ORMDL3 axis. J Cell Biochem 121(11):4601–4611. https://doi.org/10.1002/JCB.29674

    Article  CAS  PubMed  Google Scholar 

  173. Wang B, Ye Q, Zou C (2020) Long non-coding RNA THOR Enhances the stem cell-like traits of triple-negative breast cancer cells through activating β-catenin signaling. Med Sci Monit 26:e923507–e923511. https://doi.org/10.12659/MSM.923507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Mitobe Y et al (2020) Proliferation-associated long noncoding RNA, TMPO-AS1, is a potential therapeutic target for triple-negative breast cancer. Cancer Sci 111(7):2440. https://doi.org/10.1111/CAS.14498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Wang R et al (2020) LncRNA WEE2-AS1 promotes proliferation and inhibits apoptosis in triple negative breast cancer cells via regulating miR-32-5p/TOB1 axis. Biochem Biophys Res Commun 526(4):1005–1012. https://doi.org/10.1016/J.BBRC.2020.01.170

    Article  CAS  PubMed  Google Scholar 

  176. Li X, Hou L, Yin L, Zhao S (2020) LncRNA XIST interacts with miR-454 to inhibit cells proliferation, epithelial mesenchymal transition and induces apoptosis in triple-negative breast cancer. J Biosci 45(1):1–11. https://doi.org/10.1007/S12038-020-9999-7

    Article  CAS  Google Scholar 

  177. Sun E, Liu X, Lu C, Liu K (2020) Long non-coding RNA TTN-AS1 regulates the proliferation, invasion and migration of triple-negative breast cancer by targeting miR-211-5p. Mol Med Rep 23(1):1–1. https://doi.org/10.3892/MMR.2020.11683/HTML

    Article  Google Scholar 

  178. Lyu L et al (2021) Regulatory mechanisms, functions, and clinical significance of CircRNAs in triple-negative breast cancer. J Hematol Oncol 14(1):1–18. https://doi.org/10.1186/S13045-021-01052-Y

    Article  Google Scholar 

  179. Sang M et al (2018) Circular RNA ciRS-7 maintains metastatic phenotypes as a ceRNA of miR-1299 to target MMPs. Mol Cancer Res 16(11):1665–1675. https://doi.org/10.1158/1541-7786.MCR-18-0284

    Article  CAS  PubMed  Google Scholar 

  180. Dou D et al (2020) CircUBE2D2 (hsa_circ_0005728) promotes cell proliferation, metastasis and chemoresistance in triple-negative breast cancer by regulating miR-512-3p/CDCA3 axis. Cancer Cell Int 20(1):1–14. https://doi.org/10.1186/S12935-020-01547-7/FIGURES/8

    Article  Google Scholar 

  181. Li H et al (2021) Hsa_circ_0000199 facilitates chemo-tolerance of triple-negative breast cancer by interfering with miR-206/613-led PI3K/Akt/mTOR signaling. Aging (Albany NY) 13(3):4522. https://doi.org/10.18632/AGING.202415

    Article  CAS  Google Scholar 

  182. Lei M, Zheng G, Ning Q, Zheng J, Dong D (2020) Translation and functional roles of circular RNAs in human cancer. Mol Cancer 19(1):1–9. https://doi.org/10.1186/S12943-020-1135-7/TABLES/1

    Article  Google Scholar 

  183. Ye F et al (2019) circFBXW7 inhibits malignant progression by sponging miR-197–3p and encoding a 185-aa protein in triple-negative breast cancer. Mol Ther Nucleic Acids 18:88–98. https://doi.org/10.1016/J.OMTN.2019.07.023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Li J et al (2020) Circular HER2 RNA positive triple negative breast cancer is sensitive to Pertuzumab. Mol Cancer 19(1):1–18. https://doi.org/10.1186/S12943-020-01259-6/FIGURES/6

    Article  PubMed  PubMed Central  Google Scholar 

  185. Li Y et al (2021) circ-EIF6 encodes EIF6-224aa to promote TNBC progression via stabilizing MYH9 and activating the Wnt/beta-catenin pathway. Mol Ther. https://doi.org/10.1016/J.YMTHE.2021.08.026

    Article  PubMed  PubMed Central  Google Scholar 

  186. He R et al (2017) circGFRA1 and GFRA1 act as ceRNAs in triple negative breast cancer by regulating miR-34a. J Exp Clin Cancer Res. https://doi.org/10.1186/S13046-017-0614-1

    Article  PubMed  PubMed Central  Google Scholar 

  187. Zheng SR, Di Huang Q, Zheng ZH, Zhang ZT, Guo GL (2021) CircGFRA1 affects the sensitivity of triple-negative breast cancer cells to paclitaxel via the miR-361-5p/TLR4 pathway. J Biochem 169(5):601–611. https://doi.org/10.1093/jb/mvaa148

    Article  CAS  PubMed  Google Scholar 

  188. Zheng X et al (2020) The circRNA circSEPT9 mediated by E2F1 and EIF4A3 facilitates the carcinogenesis and development of triple-negative breast cancer. Mol Cancer. https://doi.org/10.1186/S12943-020-01183-9

    Article  PubMed  PubMed Central  Google Scholar 

  189. Yu J, Shen W, Xu J, Gong B, Gao B, Zhu J (2020) circUSP42 is downregulated in triple-negative breast cancer and associated with poor prognosis. Technol Cancer Res Treat. https://doi.org/10.1177/1533033820950827

    Article  PubMed  PubMed Central  Google Scholar 

  190. Zhou Y, Liu X, Lan J, Wan Y, Zhu X (2020) Circular RNA circRPPH1 promotes triple-negative breast cancer progression via the miR-556-5p/YAP1 axis. Am J Transl Res 12(10):6220–6234

    CAS  PubMed  PubMed Central  Google Scholar 

  191. Wang S, Liu F, Ma H, Cui X, Yang S, Qin R (2020) circCDYL acts as a tumor suppressor in triple negative breast cancer by sponging miR-190a-3p and upregulating TP53INP1. Clin Breast Cancer 20(5):422–430. https://doi.org/10.1016/J.CLBC.2020.04.006

    Article  PubMed  Google Scholar 

  192. Zhang X, Su X, Guo Z, Jiang X, Li X (2020) Circular RNA La-related RNA-binding protein 4 correlates with reduced tumor stage, as well as better prognosis, and promotes chemosensitivity to doxorubicin in breast cancer. J Clin Lab Anal. https://doi.org/10.1002/JCLA.23272

    Article  PubMed  PubMed Central  Google Scholar 

  193. Liu P et al (2020) circGNB1 facilitates triple-negative breast cancer progression by regulating miR-141–5p-IGF1R axis. Front Genet. https://doi.org/10.3389/FGENE.2020.00193

    Article  PubMed  PubMed Central  Google Scholar 

  194. He D, Yang X, Kuang W, Huang G, Liu X, Zhang Y (2020) The Novel Circular RNA Circ-PGAP3 promotes the proliferation and invasion of triple negative breast cancer by regulating the miR-330–3p/Myc axis. Onco Targets Ther 13:10149–10159. https://doi.org/10.2147/OTT.S274574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Zou Y et al (2019) circRAD18 sponges miR-208a/3164 to promote triple-negative breast cancer progression through regulating IGF1 and FGF2 expression. Carcinogenesis 40(12):1469–1479. https://doi.org/10.1093/CARCIN/BGZ071

    Article  CAS  PubMed  Google Scholar 

  196. Pei X, Zhang Y, Wang X, Xue B, Sun M, Li H (2020) Circular RNA circ-ZEB1 acts as an oncogene in triple negative breast cancer via sponging miR-448. Int J Biochem Cell Biol 126:105798. https://doi.org/10.1016/J.BIOCEL.2020.105798

    Article  CAS  PubMed  Google Scholar 

  197. Li X, Ren Z, Yao Y, Bao J, Yu Q (2020) The circular RNA circEIF3M promotes breast cancer progression by promoting cyclin D1 expression. Aging (Albany NY) 12(14):14775. https://doi.org/10.18632/AGING.103539

    Article  CAS  Google Scholar 

  198. Li Y, Shi P, Zheng T, Ying Z, Jiang D (2020) Circular RNA hsa_circ_0131242 promotes triple-negative breast cancer progression by sponging hsa-miR-2682. Onco Targets Ther 13:4791. https://doi.org/10.2147/OTT.S246957

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Yang SJ et al (2021) Tumor-derived exosomal circPSMA1 facilitates the tumorigenesis, metastasis, and migration in triple-negative breast cancer (TNBC) through miR-637/Akt1/β-catenin (cyclin D1) axis. Cell Death Dis 12(5):1–20. https://doi.org/10.1038/s41419-021-03680-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Xing Z et al (2021) CircRNA circ-PDCD11 promotes triple-negative breast cancer progression via enhancing aerobic glycolysis. Cell Death Discov 7(1):1–8. https://doi.org/10.1038/s41420-021-00604-y

    Article  CAS  Google Scholar 

  201. Li J et al (2021) CircCD44 plays oncogenic roles in triple-negative breast cancer by modulating the miR-502–5p/KRAS and IGF2BP2/Myc axes. Mol Cancer 20(1):1–17. https://doi.org/10.1186/S12943-021-01444-1

    Article  Google Scholar 

  202. Xiaying Z, Junxia C, Xiaying Z, Junxia C (2019) Expression of circRNA hsa_circ_0005320 in triple-negative breast cancer and its effect on cell proliferation. China Oncol 29(11):845–854. https://doi.org/10.19401/J.CNKI.1007-3639.2019.11.002

    Article  Google Scholar 

  203. Zhang J, Xu HD, Xing XJ, Liang ZT, Xia ZH, Zhao Y (2019) CircRNA_069718 promotes cell proliferation and invasion in triple-negative breast cancer by activating Wnt/β-catenin pathway. Eur Rev Med Pharmacol Sci 23(12):5315–5322. https://doi.org/10.26355/EURREV_201906_18198

    Article  CAS  PubMed  Google Scholar 

  204. Yang R, Xing L, Zheng X, Sun Y, Wang X, Chen J (2019) The circRNA circAGFG1 acts as a sponge of miR-195-5p to promote triple-negative breast cancer progression through regulating CCNE1 expression 11 medical and health sciences 1112 oncology and carcinogenesis. Mol Cancer 18(1):1–19. https://doi.org/10.1186/S12943-018-0933-7/FIGURES/8

    Article  PubMed  PubMed Central  Google Scholar 

  205. Xiao W et al (2019) CircAHNAK1 inhibits proliferation and metastasis of triple-negative breast cancer by modulating miR-421 and RASA1. Aging (Albany NY) 11(24):12043. https://doi.org/10.18632/AGING.102539

    Article  CAS  Google Scholar 

  206. Rui Y, Junxia C, Rui Y, Junxia C (2019) Effects of circular RNA hsa_circ_0058514 on the development and progression of triple-negative breast cancer. China Oncol 29(1):9–18. https://doi.org/10.19401/J.CNKI.1007-3639.2019.01.002

    Article  Google Scholar 

  207. Wang ST et al (2019) Circ-ITCH regulates triple-negative breast cancer progression through the Wnt/β-catenin pathway. Neoplasma 66(2):232–239. https://doi.org/10.4149/NEO_2018_180710N460

    Article  CAS  PubMed  Google Scholar 

  208. Tang H et al (2019) CircKIF4A acts as a prognostic factor and mediator to regulate the progression of triple-negative breast cancer. Mol Cancer 18(1):1–9. https://doi.org/10.1186/S12943-019-0946-X/TABLES/2

    Article  CAS  Google Scholar 

  209. Kong Y et al (2019) CircPLK1 sponges miR-296–5p to facilitate triple-negative breast cancer progression. Epigenomics 11(10):1163–1176. https://doi.org/10.2217/EPI-2019-0093

    Article  CAS  PubMed  Google Scholar 

  210. Wang S et al (2018) Upregulation of circ-UBAP2 predicts poor prognosis and promotes triple-negative breast cancer progression through the miR-661/MTA1 pathway. Biochem Biophys Res Commun 505(4):996–1002. https://doi.org/10.1016/J.BBRC.2018.10.026

    Article  CAS  PubMed  Google Scholar 

  211. Chen B et al (2018) circEPSTI1 as a prognostic marker and mediator of triple-negative breast cancer progression. Theranostics 8(14):4003. https://doi.org/10.7150/THNO.24106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Hu J et al (2020) Hsa_circ_0091074 regulates TAZ expression via microRNA-1297 in triple negative breast cancer cells. Int J Oncol 56(5):1314–1326. https://doi.org/10.3892/IJO.2020.5000

    Article  CAS  PubMed  Google Scholar 

  213. Fan Y et al (2021) CircNR3C2 promotes HRD1-mediated tumor-suppressive effect via sponging miR-513a-3p in triple-negative breast cancer. Mol Cancer. https://doi.org/10.1186/S12943-021-01321-X

    Article  PubMed  PubMed Central  Google Scholar 

  214. Xing L et al (2020) The circRNA circIFI30 promotes progression of triple-negative breast cancer and correlates with prognosis. Aging (Albany NY) 12(11):10983. https://doi.org/10.18632/AGING.103311

    Article  CAS  Google Scholar 

  215. Thomas M, Lieberman J, Lal A (2010) Desperately seeking microRNA targets. Nat Struct Mol Biol 17(10):1169–1174. https://doi.org/10.1038/NSMB.1921

    Article  CAS  PubMed  Google Scholar 

  216. Afonso-Grunz F, Müller S (2015) Principles of miRNA–mRNA interactions: beyond sequence complementarity. Cell Mol Life Sci 72(16):3127–3141. https://doi.org/10.1007/S00018-015-1922-2

    Article  CAS  PubMed  Google Scholar 

  217. Schmitz U, Lai X, Winter F, Wolkenhauer O, Vera J, Gupta SK (2014) Cooperative gene regulation by microRNA pairs and their identification using a computational workflow. Nucleic Acids Res 42(12):7539–7552. https://doi.org/10.1093/NAR/GKU465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Zhou X, Yang P-C (2012) MicroRNA: a small molecule with a big biological impact. MicroRNA (Shariqah, United Arab Emirates) 1(1):1–1. https://doi.org/10.2174/2211536611201010001

    Article  Google Scholar 

  219. Salmena L, Poliseno L, Tay Y, Kats L, Pandolfi PP (2011) A ceRNA hypothesis: the Rosetta stone of a hidden RNA language? Cell 146(3):353–358. https://doi.org/10.1016/J.CELL.2011.07.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Cesana M et al (2011) A long noncoding RNA controls muscle differentiation by functioning as a competing endogenous RNA. Cell 147(2):358–369. https://doi.org/10.1016/J.CELL.2011.09.028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Rahman MM, Hossain MT, Reza MS, Peng Y, Feng S, Wei Y (2021) Identification of Potential long non-coding RNA candidates that contribute to triple-negative breast cancer in humans through computational approach. Int J Mol Sci 22(22):12359. https://doi.org/10.3390/IJMS222212359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Wang KC, Chang HY (2011) Molecular mechanisms of long noncoding RNAs. Mol Cell 43(6):904–914. https://doi.org/10.1016/J.MOLCEL.2011.08.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Lozano-Romero A et al (2020) HOX transcript antisense RNA HOTAIR abrogates vasculogenic mimicry by targeting the angiomiR-204/FAK axis in triple negative breast cancer cells. Non-Coding RNA 6(2):19. https://doi.org/10.3390/NCRNA6020019

    Article  CAS  PubMed Central  Google Scholar 

  224. Jin C, Yan B, Lu Q, Lin Y, Ma L (2016) Reciprocal regulation of Hsa-miR-1 and long noncoding RNA MALAT1 promotes triple-negative breast cancer development. Tumor Biol 37(6):7383–7394. https://doi.org/10.1007/S13277-015-4605-6/FIGURES/7

    Article  CAS  Google Scholar 

  225. Lan F, Zhang X, Li H, Yue X, Sun Q (2021) Serum exosomal lncRNA XIST is a potential non-invasive biomarker to diagnose recurrence of triple-negative breast cancer. J Cell Mol Med 25(16):7602–7607. https://doi.org/10.1111/JCMM.16009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. Le K et al (2019) Gene and lncRNA co-expression network analysis reveals novel ceRNA network for triple-negative breast cancer. Sci Rep 9(1):1–10. https://doi.org/10.1038/s41598-019-51626-7

    Article  CAS  Google Scholar 

  227. Panda AC (2018) Circular RNAs act as miRNA sponges. Adv Exp Med Biol 1087:67–79. https://doi.org/10.1007/978-981-13-1426-1_6

    Article  CAS  PubMed  Google Scholar 

  228. Angajala A et al (2019) Quadruple Negative Breast Cancers (QNBC) demonstrate subtype consistency among primary and recurrent or metastatic breast cancer. Transl Oncol 12(3):493–501. https://doi.org/10.1016/J.TRANON.2018.11.008

    Article  PubMed  Google Scholar 

  229. Hon JDC et al (2016) Breast cancer molecular subtypes from: TNBC to QNBC. Am J Cancer Res 6(9):1864

    CAS  PubMed  PubMed Central  Google Scholar 

  230. Davis M et al (2018) AR negative triple negative or ‘quadruple negative’ breast cancers in African American women have an enriched basal and immune signature. PLoS ONE. https://doi.org/10.1371/JOURNAL.PONE.0196909

    Article  PubMed  PubMed Central  Google Scholar 

  231. Mohammed AA, Elsayed FM, Algazar M, Rashed HE, Anter AH (2020) Neoadjuvant chemotherapy in triple negative breast cancer: correlation between androgen receptor expression and pathological response. Asian Pac J Cancer Prev 21(2):563. https://doi.org/10.31557/APJCP.2020.21.2.563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  232. Angajala A, Hughley R, Shweta T, Dean-Colomb W, Tan M, Yates C (2018) Abstract A04: identification of differentially expressed micro-RNAs in African American women with quadruple-negative breast cancer. Cancer Epidemiol Prev Biomarkers 27(7 Supplement):A04–A04. https://doi.org/10.1158/1538-7755.DISP17-A04

    Article  Google Scholar 

Download references

Funding

This study was not funded by any authority.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satarupa Banerjee.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paul, U., Banerjee, S. The functional significance and cross-talk of non-coding RNAs in triple negative and quadruple negative breast cancer. Mol Biol Rep 49, 6899–6918 (2022). https://doi.org/10.1007/s11033-022-07288-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-022-07288-2

Keywords

Navigation