Skip to main content

Advertisement

Log in

JAK2/STAT3 inhibition attenuates intestinal ischemia–reperfusion injury via promoting autophagy: in vitro and in vivo study

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Background

Intestinal ischemia–reperfusion (I/R) causes severe injury to the intestine, leading to systemic inflammation and multiple organ failure. Autophagy is a stress-response mechanism that can protect against I/R injury by removing damaged organelles and toxic protein aggregates. Recent evidence has identified JAK-STAT signaling pathway as a new regulator of autophagy process, however, their regulatory relationship in intestinal I/R remains unknown.

Methods and results

We systematically analyzed intestinal transcriptome data and found that JAK-STAT pathway was largely activated in response to I/R with most significant upregulation observed for JAK2 and STAT3. ChIP-Seq and luciferase assays in an in vitro oxygen–glucose deprivation and reoxygenation model revealed that activated JAK2/STAT3 signaling directly inhibited the transcription of autophagy regulator Beclin-1, leading to the suppression of autophagy and the activation of intestinal cell death. These findings were further confirmed in an in vivo mouse model, in which, intestinal I/R injury was associated with the activation of JAK2/STAT3 pathway and the deactivation of Beclin-1-mediated autophagy, while inhibiting JAK2/STAT3 with AG490 reactivated autophagy and improved survival after intestinal I/R injury.

Conclusions

JAK2/STAT3 signaling suppresses autophagy process during intestinal I/R, while inhibiting JAK-STAT can be protective against intestinal I/R injury by activating autophagy. These findings expand our knowledge on intestinal I/R injury and provide therapeutic targets for clinical treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

Data will be made available on reasonable request.

Code availability

Not applicable.

References

  1. Gonzalez LM, Moeser AJ, Blikslager AT (2015) Animal models of ischemia-reperfusion-induced intestinal injury: progress and promise for translational research. Am J Physiol Gastrointest Liver Physiol 308:G63-75. https://doi.org/10.1152/ajpgi.00112.2013

    Article  CAS  PubMed  Google Scholar 

  2. Grootjans J, Lenaerts K, Derikx JP, Matthijsen RA, de Bruine AP, van Bijnen AA, van Dam RM, Dejong CH, Buurman WA (2010) Human intestinal ischemia-reperfusion-induced inflammation characterized: experiences from a new translational model. Am J Pathol 176:2283–2291. https://doi.org/10.2353/ajpath.2010.091069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Wang J, Zhang W, Wu G (2021) Intestinal ischemic reperfusion injury: Recommended rats model and comprehensive review for protective strategies. Biomed Pharmacother 138:111482. https://doi.org/10.1016/j.biopha.2021.111482

    Article  CAS  PubMed  Google Scholar 

  4. Mizushima N, Levine B, Cuervo AM, Klionsky DJ (2008) Autophagy fights disease through cellular self-digestion. Nature 451:1069–1075. https://doi.org/10.1038/nature06639

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Cursio R, Colosetti P, Codogno P, Cuervo AM, Shen HM (2015) The role of autophagy in liver diseases: mechanisms and potential therapeutic targets. Biomed Res Int 2015:480508. https://doi.org/10.1155/2015/480508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ma S, Wang Y, Chen Y, Cao F (2015) The role of the autophagy in myocardial ischemia/reperfusion injury. Biochim Biophys Acta 1852:271–276. https://doi.org/10.1016/j.bbadis.2014.05.010

    Article  CAS  PubMed  Google Scholar 

  7. Hoshino A, Matoba S, Iwai-Kanai E, Nakamura H, Kimata M, Nakaoka M, Katamura M, Okawa Y, Ariyoshi M, Mita Y, Ikeda K, Ueyama T, Okigaki M, Matsubara H (2012) p53-TIGAR axis attenuates mitophagy to exacerbate cardiac damage after ischemia. J Mol Cell Cardiol 52:175–184. https://doi.org/10.1016/j.yjmcc.2011.10.008

    Article  CAS  PubMed  Google Scholar 

  8. Kim JS, Nitta T, Mohuczy D, O’Malley KA, Moldawer LL, Dunn WA Jr, Behrns KE (2008) Impaired autophagy: a mechanism of mitochondrial dysfunction in anoxic rat hepatocytes. Hepatology 47:1725–1736. https://doi.org/10.1002/hep.22187

    Article  CAS  PubMed  Google Scholar 

  9. Tannous P, Zhu H, Nemchenko A, Berry JM, Johnstone JL, Shelton JM, Miller FJ Jr, Rothermel BA, Hill JA (2008) Intracellular protein aggregation is a proximal trigger of cardiomyocyte autophagy. Circulation 117:3070–3078. https://doi.org/10.1161/CIRCULATIONAHA.107.763870

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Calise J, Powell SR (2013) The ubiquitin proteasome system and myocardial ischemia. Am J Physiol Heart Circ Physiol 304:H337–H349. https://doi.org/10.1152/ajpheart.00604.2012

    Article  CAS  PubMed  Google Scholar 

  11. Valentim L, Laurence KM, Townsend PA, Carroll CJ, Soond S, Scarabelli TM, Knight RA, Latchman DS, Stephanou A (2006) Urocortin inhibits Beclin1-mediated autophagic cell death in cardiac myocytes exposed to ischaemia/reperfusion injury. J Mol Cell Cardiol 40:846–852. https://doi.org/10.1016/j.yjmcc.2006.03.428

    Article  CAS  PubMed  Google Scholar 

  12. He L, Zhang J, Zhao J, Ma N, Kim SW, Qiao S, Ma X (2018) Autophagy: the last defense against cellular nutritional stress. Adv Nutr 9:493–504. https://doi.org/10.1093/advances/nmy011

    Article  PubMed  PubMed Central  Google Scholar 

  13. Hamacher-Brady A, Brady NR, Gottlieb RA, Gustafsson AB (2006) Autophagy as a protective response to Bnip3-mediated apoptotic signaling in the heart. Autophagy 2:307–309. https://doi.org/10.4161/auto.2947

    Article  CAS  PubMed  Google Scholar 

  14. Kandadi MR, Hu N, Ren J (2013) ULK1 plays a critical role in AMPK-mediated myocardial autophagy and contractile dysfunction following acute alcohol challenge. Curr Pharm Des 19:4874–4887. https://doi.org/10.2174/1381612811319270010

    Article  CAS  PubMed  Google Scholar 

  15. Park CW, Hong SM, Kim ES, Kwon JH, Kim KT, Nam HG, Choi KY (2013) BNIP3 is degraded by ULK1-dependent autophagy via MTORC1 and AMPK. Autophagy 9:345–360. https://doi.org/10.4161/auto.23072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Petiot A, Ogier-Denis E, Blommaart EF, Meijer AJ, Codogno P (2000) Distinct classes of phosphatidylinositol 3’-kinases are involved in signaling pathways that control macroautophagy in HT-29 cells. J Biol Chem 275:992–998. https://doi.org/10.1074/jbc.275.2.992

    Article  CAS  PubMed  Google Scholar 

  17. Wang LQ, Cheng XS, Huang CH, Huang B, Liang Q (2015) Rapamycin protects cardiomyocytes against anoxia/reoxygenation injury by inducing autophagy through the PI3k/Akt pathway. J Huazhong Univ Sci Technolog Med Sci 35:10–15. https://doi.org/10.1007/s11596-015-1381-x

    Article  CAS  PubMed  Google Scholar 

  18. You L, Wang Z, Li H, Shou J, Jing Z, Xie J, Sui X, Pan H, Han W (2015) The role of STAT3 in autophagy. Autophagy 11:729–739. https://doi.org/10.1080/15548627.2015.1017192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Miao LJ, Huang FX, Sun ZT, Zhang RX, Huang SF, Wang J (2014) Stat3 inhibits Beclin 1 expression through recruitment of HDAC3 in nonsmall cell lung cancer cells. Tumour Biol 35:7097–7103. https://doi.org/10.1007/s13277-014-1961-6

    Article  CAS  PubMed  Google Scholar 

  20. Lin XL, Xiao WJ, Xiao LL, Liu MH (2018) Molecular mechanisms of autophagy in cardiac ischemia/reperfusion injury (Review). Mol Med Rep 18:675–683. https://doi.org/10.3892/mmr.2018.9028

    Article  CAS  PubMed  Google Scholar 

  21. Li W, Wei D, Zhu Z, Xie X, Zhan S, Zhang R, Zhang G, Huang L (2020) Dl-3-n-butylphthalide alleviates hippocampal neuron damage in chronic cerebral hypoperfusion via regulation of the CNTF/CNTFRalpha/JAK2/STAT3 signaling pathways. Front Aging Neurosci 12:587403. https://doi.org/10.3389/fnagi.2020.587403

    Article  CAS  PubMed  Google Scholar 

  22. Song L, Liu H, Ma L, Zhang X, Jiang Z, Jiang C (2013) Inhibition of autophagy by 3-MA enhances endoplasmic reticulum stress-induced apoptosis in human nasopharyngeal carcinoma cells. Oncol Lett 6:1031–1038. https://doi.org/10.3892/ol.2013.1498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Sandelin A, Alkema W, Engstrom P, Wasserman WW, Lenhard B (2004) JASPAR: an open-access database for eukaryotic transcription factor binding profiles. Nucleic Acids Res 32:D91–D94. https://doi.org/10.1093/nar/gkh012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Farrar MA, Alberol-Ila J, Perlmutter RM (1996) Activation of the Raf-1 kinase cascade by coumermycin-induced dimerization. Nature 383:178–181. https://doi.org/10.1038/383178a0

    Article  CAS  PubMed  Google Scholar 

  25. Zhang T, Chen Y, Cai J, Pan M, Sun Q, Zhang J, Sun C (2020) SOCS2 inhibits mitochondrial fatty acid oxidation via suppressing LepR/JAK2/AMPK signaling pathway in mouse adipocytes. Oxid Med Cell Longev 2020:3742542. https://doi.org/10.1155/2020/3742542

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Li F, Yang B, Li T, Gong X, Zhou F, Hu Z (2019) HSPB8 over-expression prevents disruption of blood-brain barrier by promoting autophagic flux after cerebral ischemia/reperfusion injury. J Neurochem 148:97–113. https://doi.org/10.1111/jnc.14626

    Article  CAS  PubMed  Google Scholar 

  27. Cheng J, Uchida M, Zhang W, Grafe MR, Herson PS, Hurn PD (2011) Role of salt-induced kinase 1 in androgen neuroprotection against cerebral ischemia. J Cereb Blood Flow Metab 31:339–350. https://doi.org/10.1038/jcbfm.2010.98

    Article  CAS  PubMed  Google Scholar 

  28. Freitas MC, Uchida Y, Zhao D, Ke B, Busuttil RW, Kupiec-Weglinski JW (2010) Blockade of Janus kinase-2 signaling ameliorates mouse liver damage due to ischemia and reperfusion. Liver Transpl 16:600–610. https://doi.org/10.1002/lt.22036

    Article  PubMed  PubMed Central  Google Scholar 

  29. Li F, Wong R, Luo Z, Du L, Turlova E, Britto LRG, Feng ZP, Sun HS (2019) Neuroprotective effects of AG490 in neonatal hypoxic-ischemic brain injury. Mol Neurobiol 56:8109–8123. https://doi.org/10.1007/s12035-019-01656-z

    Article  CAS  PubMed  Google Scholar 

  30. Chiu CJ, McArdle AH, Brown R, Scott HJ, Gurd FN (1970) Intestinal mucosal lesion in low-flow states. I. A morphological, hemodynamic, and metabolic reappraisal. Arch Surg 101:478–483. https://doi.org/10.1001/archsurg.1970.01340280030009

    Article  CAS  PubMed  Google Scholar 

  31. Karhausen J, Bernstock JD, Johnson KR, Sheng H, Ma Q, Shen Y, Yang W, Hallenbeck JM, Paschen W (2018) Ubc9 overexpression and SUMO1 deficiency blunt inflammation after intestinal ischemia/reperfusion. Lab Invest 98:799–813. https://doi.org/10.1038/s41374-018-0035-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Oki S, Ohta T, Shioi G, Hatanaka H, Ogasawara O, Okuda Y, Kawaji H, Nakaki R, Sese J, Meno C (2018) ChIP-Atlas: a data-mining suite powered by full integration of public ChIP-seq data. EMBO Rep. https://doi.org/10.15252/embr.201846255

    Article  PubMed  PubMed Central  Google Scholar 

  33. Zhong Y, Yin B, Ye Y, Dekhel O, Xiong X, Jian Z, Gu L (2021) The bidirectional role of the JAK2/STAT3 signaling pathway and related mechanisms in cerebral ischemia-reperfusion injury. Exp Neurol 341:113690. https://doi.org/10.1016/j.expneurol.2021.113690

    Article  CAS  PubMed  Google Scholar 

  34. Zapalska-Sozoniuk M, Chrobak L, Kowalczyk K, Kankofer M (2019) Is it useful to use several “omics” for obtaining valuable results? Mol Biol Rep 46:3597–3606. https://doi.org/10.1007/s11033-019-04793-9

    Article  CAS  PubMed  Google Scholar 

  35. Oh HM, Yu CR, Dambuza I, Marrero B, Egwuagu CE (2012) STAT3 protein interacts with Class O Forkhead transcription factors in the cytoplasm and regulates nuclear/cytoplasmic localization of FoxO1 and FoxO3a proteins in CD4(+) T cells. J Biol Chem 287:30436–30443. https://doi.org/10.1074/jbc.M112.359661

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Recio C, Guerra B, Guerra-Rodriguez M, Aranda-Tavio H, Martin-Rodriguez P, de Mirecki-Garrido M, Brito-Casillas Y, Garcia-Castellano JM, Estevez-Braun A, Fernandez-Perez L (2019) Signal transducer and activator of transcription (STAT)-5: an opportunity for drug development in oncohematology. Oncogene 38:4657–4668. https://doi.org/10.1038/s41388-019-0752-3

    Article  CAS  PubMed  Google Scholar 

  37. Mascareno E, El-Shafei M, Maulik N, Sato M, Guo Y, Das DK, Siddiqui MA (2001) JAK/STAT signaling is associated with cardiac dysfunction during ischemia and reperfusion. Circulation 104:325–329. https://doi.org/10.1161/01.cir.104.3.325

    Article  CAS  PubMed  Google Scholar 

  38. Yang N, Luo M, Li R, Huang Y, Zhang R, Wu Q, Wang F, Li Y, Yu X (2008) Blockage of JAK/STAT signalling attenuates renal ischaemia-reperfusion injury in rat. Nephrol Dial Transplant 23:91–100. https://doi.org/10.1093/ndt/gfm509

    Article  CAS  PubMed  Google Scholar 

  39. Si Y, Bao H, Han L, Shi H, Zhang Y, Xu L, Liu C, Wang J, Yang X, Vohra A, Ma D (2013) Dexmedetomidine protects against renal ischemia and reperfusion injury by inhibiting the JAK/STAT signaling activation. J Transl Med 11:141. https://doi.org/10.1186/1479-5876-11-141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Zhang H, Bosch-Marce M, Shimoda LA, Tan YS, Baek JH, Wesley JB, Gonzalez FJ, Semenza GL (2008) Mitochondrial autophagy is an HIF-1-dependent adaptive metabolic response to hypoxia. J Biol Chem 283:10892–10903. https://doi.org/10.1074/jbc.M800102200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Levy DE, Darnell JE Jr (2002) Stats: transcriptional control and biological impact. Nat Rev Mol Cell Biol 3:651–662. https://doi.org/10.1038/nrm909

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by Key R & D Project of Jiangxi Provincial Science and Technology Department of Jiangxi Province (20192BBG70024) and Science and Technology Research Project of Education Department of Jiangxi Province (GJJ190058).

Author information

Authors and Affiliations

Authors

Contributions

ZL, KH, YSC, YJH and YC carried out the experiment; ZL, KH, QH and WZ analyzed the data; ZL, YC and XKZ wrote the manuscript; QX and XKZ conceived the original idea and supervised the project.

Corresponding author

Correspondence to Xue-Kang Zhang.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Ethical approval

Animal experiments were carried out in accordance with the guidelines approved by the Institutional Animal Care and Use Committee of First Affiliated Hospital of Nanchang University.

Consent to participate

Not applicable.

Consent for publication

All authors have read the final version and consent to the publication of the article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 20 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Z., Hu, K., Chen, YS. et al. JAK2/STAT3 inhibition attenuates intestinal ischemia–reperfusion injury via promoting autophagy: in vitro and in vivo study. Mol Biol Rep 49, 2857–2867 (2022). https://doi.org/10.1007/s11033-021-07099-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-021-07099-x

Keywords

Navigation