Skip to main content

Advertisement

Log in

Exogenous adenosine activates A2A adenosine receptor to inhibit RANKL-induced osteoclastogenesis via AP-1 pathway to facilitate bone repair

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Background

Adenosine is a purine nucleoside involved in regulating bone homeostasis through binding to A1, A2A, A2B, and A3 adenosine receptors (A1R, A2AR, A2BR, and A3R, respectively). However, the underlying mechanisms by which adenosine and receptor subtypes regulate osteoclast differentiation remain uncertain. This study aims to assess the role of exogenous adenosine and receptor subtypes in receptor activator of NF-κB ligand (RANKL)-induced osteoclast formation and explore the underlying molecular mechanisms.

Methods and results

The nanofibrous mats incorporated with adenosine exhibited robust ability to facilitate rat critical-size calvarial defect healing with decreased number of osteoclasts. Moreover, exogenous adenosine substantially enhanced the expression of A2AR and suppressed tartrate-resistant acid phosphatase-positive osteoclast formation and expression of osteoclast-related genes Ctsk, NFATc1, MMP9, and ACP5. This enhancement and suppression could be reversed by adding an A2AR antagonist, ZM241385, in RAW264.7 cells. Finally, RNA sequencing showed that the expression of Fos-related antigen 2 (Fra2) was distinctly downregulated through stimulation of adenosine in RAW264.7 cells treated with RANKL. This downregulation was reversed by ZM241385 according to real-time PCR, Western blot, and immunofluorescence analyses.

Conclusions

These findings demonstrated that exogenous adenosine binding to A2AR attenuated osteoclast differentiation via the inhibition of activating protein-1 (AP-1, including Fra2 subunit) pathway both in vitro and in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Kular J, Tickner J, Chim SM, Xu J (2012) An overview of the regulation of bone remodelling at the cellular level. Clin Biochem 45:863–873. https://doi.org/10.1016/j.clinbiochem.2012.03.021

    Article  CAS  PubMed  Google Scholar 

  2. Nakashima T, Takayanagi H (2009) Osteoimmunology: crosstalk between the immune and bone systems. J Clin Immunol 29:555–567. https://doi.org/10.1007/s10875-009-9316-6

    Article  PubMed  Google Scholar 

  3. Vaananen HK, Zhao H, Mulari M, Halleen JM (2000) The cell biology of osteoclast function. J Cell Sci 113(Pt 3):377–381. https://doi.org/10.1242/jcs.113.3.377

    Article  CAS  PubMed  Google Scholar 

  4. Boyle WJ, Scott WS, Lacey DL (2003) Osteoclast differentiation and activation. Nature 423:337–342. https://doi.org/10.1038/nature01658

    Article  CAS  PubMed  Google Scholar 

  5. Honma M, Ikebuchi Y, Kariya Y, Suzuki H (2014) Regulatory mechanisms of RANKL presentation to osteoclast precursors. Curr Osteoporos Rep 12:115–120. https://doi.org/10.1007/s11914-014-0189-0

    Article  PubMed  Google Scholar 

  6. Kim H, Walsh MC, Yu J, Laskoski P, Takigawa K, Takegahara N, Choi Y (2020) Methylosome protein 50 associates with the purinergic receptor P2X5 and is involved in osteoclast maturation. FEBS Lett 594:144–152. https://doi.org/10.1002/1873-3468.13581

    Article  CAS  PubMed  Google Scholar 

  7. Kumar V (2013) Adenosine as an endogenous immunoregulator in cancer pathogenesis: where to go? Purinergic Signal 9:145–165. https://doi.org/10.1007/s11302-012-9349-9

    Article  CAS  PubMed  Google Scholar 

  8. Fredholm BB, IJzerman AP, Jacobson KA, Linden J, Muller CE (2011) International union of basic and clinical pharmacology LXXXI nomenclature and classification of adenosine receptors–an update. Pharmacol Rev 63:1–34. https://doi.org/10.1124/pr.110.003285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Strazzulla LC, Cronstein BN (2016) Regulation of bone and cartilage by adenosine signaling. Purinergic Signal 12:583–593. https://doi.org/10.1007/s11302-016-9527-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Mediero A, Kara FM, Wilder T, Cronstein BN (2012) Adenosine A2A receptor ligation inhibits osteoclast formation. Am J Pathol 180:775–786. https://doi.org/10.1016/j.ajpath.2011.10.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Mediero A, Perez-Aso M, Cronstein BN (2013) Activation of adenosine A(2A) receptor reduces osteoclast formation via PKA- and ERK1/2-mediated suppression of NFκB nuclear translocation. Br J Pharmacol 169:1372–1388. https://doi.org/10.1111/bph.12227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Basheer R, Porkka-Heiskanen T, Stenberg D, Mccarley RW (1999) Adenosine and behavioral state control: adenosine increases c-Fos protein and AP1 binding in basal forebrain of rats. Mol Brain Res 73:1–10. https://doi.org/10.1016/S0169-328X(99)00219-3

    Article  CAS  PubMed  Google Scholar 

  13. Bao R, Hou J, Li Y, Bian J, Deng X, Zhu X, Yang T (2016) Adenosine promotes Foxp3 expression in Treg cells in sepsis model by activating JNK/AP-1 pathway. Am J Transl Res 8:2284–2292

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Eitan S, Michael K (2002) AP-1 as a regulator of cell life and death. Nat Cell Biol 4:E131–E136. https://doi.org/10.1038/ncb0502-e131

    Article  CAS  Google Scholar 

  15. Axel B, Jody H, Fatima MG, Andras N, Moshe Y, Wagner EF (2003) Impaired intervertebral disc formation in the absence of Jun. Development 130:103–109. https://doi.org/10.1242/dev.00186

    Article  CAS  Google Scholar 

  16. Wang ZQ, Ovitt C, Grigoriadis AE, Möhle-Steinlein U, Rüther U, Wagner EF (1992) Bone and haematopoietic defects in mice lacking c-fos. Nature 360:741–745. https://doi.org/10.1038/360741a0

    Article  CAS  PubMed  Google Scholar 

  17. Chen YW, Wang HC, Gao LH, Liu C, Jiang YX, Qu H, Li CY, Jiang JH (2016) Osteoclastogenesis in local alveolar bone in early decortication-facilitated orthodontic tooth movement. PLoS ONE 11:e0153937. https://doi.org/10.1371/journal.pone.0153937

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. David JP, Rincon M, Neff L, Horne WC, Baron R (2001) Carbonic anhydrase II is an AP-1 target gene in osteoclasts. J Cell Physiol 188:89–97. https://doi.org/10.1002/jcp.1099

    Article  CAS  PubMed  Google Scholar 

  19. Cheng X, Cheng G, Xing X, Yin CC, Cheng Y, Zhou X, Jiang S, Tao FH, Deng HB, Li ZB (2020) Controlled release of adenosine from core-shell nanofibers to promote bone regeneration through STAT3 signaling pathway. J Control Rel 319:234–245. https://doi.org/10.1016/j.jconrel.2019.12.048

    Article  CAS  Google Scholar 

  20. Cheng X, Wan QL, Li ZB (2017) AG490 suppresses interleukin-34-mediated osteoclastogenesis in mice bone marrow macrophages. Cell Biol Int 41:659–668. https://doi.org/10.1002/cbin.10771

    Article  CAS  PubMed  Google Scholar 

  21. Love MI, Wolfgang H, Simon A (2014) Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15:550. https://doi.org/10.1186/s13059-014-0550-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kang H, Shih YRV, Nakasaki M, Kabra H, Varghese S (2016) Small molecule–driven direct conversion of human pluripotent stem cells into functional osteoblasts. Sci Adv 2:e1600691–e1600691. https://doi.org/10.1126/sciadv.1600691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Takedachi M, Oohara H, Smith BJ, Iyama M, Kobashi M, Maeda K, Long CL, Humphrey MB, Stoecker BJ, Toyosawa S, Thompson LF, Murakami S (2012) CD73-generated adenosine promotes osteoblast differentiation. J Cell Physiol 227:2622–2631. https://doi.org/10.1002/jcp.23001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kara FM, Chitu V, Sloane J, Axelrod M, Fredholm BB, Stanley ER, Cronstein BN (2010) Adenosine A(1) receptors (A(1)Rs) play a critical role in osteoclast formation and function. FASEB J 24:2325–2333. https://doi.org/10.1096/fj.09-147447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Aránzazu M, Frenkel SR, Tuere W, Wenjie H, Amitabha M, Cronstein BN (2012) Adenosine A2A receptor activation prevents wear particle-induced osteolysis. Sci Transl Med 4:135ra65. https://doi.org/10.1126/scitranslmed.3003393

    Article  CAS  Google Scholar 

  26. Yegutkin GG (2008) Nucleotide- and nucleoside-converting ectoenzymes: Important modulators of purinergic signalling cascade. Biochim Biophys Acta 1783:673–694. https://doi.org/10.1016/j.bbamcr.2008.01.024

    Article  CAS  PubMed  Google Scholar 

  27. Yao C, Yao GQ, Sun BH, Zhang CQ, Tommasini SM, Insogna K (2014) The transcription factor T-box 3 regulates colony-stimulating factor 1-dependent Jun dimerization protein 2 expression and plays an important role in osteoclastogenesis. J Biol Chem 289:6775–6790. https://doi.org/10.1074/jbc.m113.499210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Reimi K, Toshiaki O, Junichi O, Tohru T, Yuho K, Hiromi O, Atsuhiko H, Kozo N, Sakae T, Hidehiko F (2003) Jun dimerization protein 2 (JDP2), a member of the AP-1 family of transcription factor, mediates osteoclast differentiation induced by RANKL. J Exp Med 197:1029–1035. https://doi.org/10.1084/jem.20021321

    Article  CAS  Google Scholar 

  29. Beranger GE, Momier D, Guigonis JM, Samson M, Carle GF, Scimeca JC (2007) Differential binding of poly(ADP-Ribose) polymerase-1 and JunD/Fra2 accounts for RANKL-induced Tcirg1 gene expression during osteoclastogenesis. J Bone Miner Res 22:975–983. https://doi.org/10.1359/jbmr.070406

    Article  CAS  PubMed  Google Scholar 

  30. Grigoriadis AE, Wang ZQ, Cecchini MG, Hofstetter W, Felix R, Fleisch HA, Wagner EF (1994) c-Fos: a key regulator of osteoclast-macrophage lineage determination and bone remodeling. Science 266:443–448. https://doi.org/10.1126/science.7939685

    Article  CAS  PubMed  Google Scholar 

  31. Ikeda F, Nishimura R, Matsubara T, Tanaka S, Inoue JI, Reddy SV, Hata K, Yamashita K, Hiraga T, Watanabe T (2004) Critical roles of c-Jun signaling in regulation of NFAT family and RANKL-regulated osteoclast differentiation. J Clin Invest 114:475–484. https://doi.org/10.1172/jci200419657

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Li CH, Yang ZH, Li ZX, Ma Y, Zhang LP, Zheng CB, Qiu WW, Wu X, Wang X, Li H (2011) Maslinic acid suppresses osteoclastogenesis and prevents ovariectomy-induced bone loss by regulating RANKL-mediated NF-κB and MAPK signaling pathways. J Bone Miner Res 26:644–656. https://doi.org/10.1002/jbmr.242

    Article  CAS  PubMed  Google Scholar 

  33. Fabrizio V, Martina T, Carmen C, Stefania G, Stefania M, Stefania S, Ruggero C, Goldring MB, Pier Andrea B, Katia V (2013) Pulsed electromagnetic fields increased the anti-inflammatory effect of A2A and A3 adenosine receptors in human T/C-28a2 chondrocytes and hFOB 119 osteoblasts. PLoS ONE 8:e65561. https://doi.org/10.1371/journal.pone.0065561

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (No. 81771051), Shenzhen Key Medical Discipline Construction Fund (SZXK0090) and Guangdong Basic and Applied Basic Research Foundation (2020A1515110880).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zubing Li.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interests.

Ethical approval

This study was approved by the by the Ethics Committee of School and Hospital of Stomatology, Wuhan University (Accreditation Number 00273633).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 17 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, X., Yin, C., Deng, Y. et al. Exogenous adenosine activates A2A adenosine receptor to inhibit RANKL-induced osteoclastogenesis via AP-1 pathway to facilitate bone repair. Mol Biol Rep 49, 2003–2014 (2022). https://doi.org/10.1007/s11033-021-07017-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-021-07017-1

Keywords

Navigation