Skip to main content
Log in

Interferon-induced transmembrane protein 2 promotes epithelial-mesenchymal transition by activating transforming growth factor-β1/small mother against decapentaplegic 2 signaling in gastric cancer

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Background

Gastric cancer (GC) is one of the most prevalent malignancy around the world. Primary tumor cells are enabled to invade and migrate into adjacent normal tissues to form secondary tumors. Epithelial-mesenchymal transitions (EMT) plays a pivotal role in facilitating tumor progression. Abundant evidence suggested that the transforming growth factor-β1 (TGF-β1) triggered the process of EMT. Nonetheless, the precise molecular mechanisms underlying EMT requires further elucidation, and there still lacks effective specific therapeutic target. In our recent research, we demonstrated that the interferon (IFN)-induced transmembrane protein 2 (IFITM2) promoted the growth and metastasis of GC. However, it remains unclear whether IFITM2 involves in TGF-β1 mediated EMT in GC.

Methods and results

In the present research, we investigated the functional role of IFITM2 in EMT process and TGF-β1 signaling pathway in two GC cell lines. We noticed that silencing IFITM2 can effectively inhibit TGF-β1 signaling mediated EMT by regulating down stream small mother against decapentaplegic (SMAD) 2/3 and transcription factors.This finding was further determined in both tumor tissues from GC patients and normal tissues adjacent to cancer. Our data demonstrated the key role of IFITM2 in TGF-β1 signaling and EMT in GC.

Conclusion

The findings enriched our understanding of the underlying mechanism in EMT during the progression of GC. In addition, IFITM2 would be a potential target for treating GC and other malignant tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

Abbreviations

EMT:

Epithelial-mesenchymal transitions

ECM:

Extracellular matrix

GC:

Gastric cancer

GSEA:

Gene set enrichment analysis

IFITM2:

Interferon (IFN)-induced transmembrane protein 2

NES:

Normalized enrichment score

SMAD:

Small mother against decapentaplegic

TGF-β1:

Transforming growth factor-β1

ZEB1:

Zinc finger E-box-binding homeobox 1

References

  1. Chen W, Zheng R, Baade PD, Zhang S, Zeng H, Bray F, Jemal A, Yu XQ, He J (2016) Cancer statistics in China, 2015. CA 66(2):115–132. https://doi.org/10.3322/caac.21338

    Article  PubMed  Google Scholar 

  2. Digklia A, Wagner AD (2016) Advanced gastric cancer: current treatment landscape and future perspectives. World J Gastroenterol 22(8):2403–2414. https://doi.org/10.3748/wjg.v22.i8.2403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Jia S, Qu T, Wang X, Feng M, Yang Y, Feng X, Ma R, Li W, Hu Y, Feng Y, Ji K, Li Z, Jiang W, Ji J (2017) KIAA1199 promotes migration and invasion by Wnt/beta-catenin pathway and MMPs mediated EMT progression and serves as a poor prognosis marker in gastric cancer. PLoS ONE 12(4):e0175058. doi:https://doi.org/10.1371/journal.pone.0175058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Nieto MA (2013) Epithelial plasticity: a common theme in embryonic and cancer cells. Science 342(6159):1234850. doi:https://doi.org/10.1126/science.1234850

    Article  CAS  PubMed  Google Scholar 

  5. Thiery JP, Acloque H, Huang RY, Nieto MA (2009) Epithelial-mesenchymal transitions in development and disease. Cell 139(5):871–890. doi:https://doi.org/10.1016/j.cell.2009.11.007

    Article  CAS  PubMed  Google Scholar 

  6. Pickup M, Novitskiy S, Moses HL (2013) The roles of TGFbeta in the tumour microenvironment. Nat Rev Cancer 13(11):788–799. doi:https://doi.org/10.1038/nrc3603

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Daniel-Carmi V, Makovitzki-Avraham E, Reuven EM, Goldstein I, Zilkha N, Rotter V, Tzehoval E, Eisenbach L (2009) The human 1-8D gene (IFITM2) is a novel p53 independent pro-apoptotic gene. Int J Cancer 125(12):2810–2819. doi:https://doi.org/10.1002/ijc.24669

    Article  CAS  PubMed  Google Scholar 

  8. Xu L, Zhou R, Yuan L, Wang S, Li X, Ma H, Zhou M, Pan C, Zhang J, Huang N, Shi M, Bin J, Liao Y, Liao W (2017) IGF1/IGF1R/STAT3 signaling-inducible IFITM2 promotes gastric cancer growth and metastasis. Cancer Lett 393:76–85. doi:https://doi.org/10.1016/j.canlet.2017.02.014

    Article  CAS  PubMed  Google Scholar 

  9. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, Paulovich A, Pomeroy SL, Golub TR, Lander ES, Mesirov JP (2005) Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A 102(43):15545–15550. https://doi.org/10.1073/pnas.0506580102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Hugo H, Ackland ML, Blick T, Lawrence MG, Clements JA, Williams ED, Thompson EW (2007) Epithelial—mesenchymal and mesenchymal—epithelial transitions in carcinoma progression. J Cell Physiol 213(2):374–383. https://doi.org/10.1002/jcp.21223

    Article  CAS  PubMed  Google Scholar 

  11. Christofori G (2006) New signals from the invasive front. Nature 441(7092):444–450. doi:https://doi.org/10.1038/nature04872

    Article  CAS  PubMed  Google Scholar 

  12. Noronha C, Ribeiro AS, Taipa R, Castro DS, Reis J, Faria C, Paredes J (2021) Cadherin expression and EMT: a focus on gliomas. Biomedicines. https://doi.org/10.3390/biomedicines9101328

    Article  PubMed  PubMed Central  Google Scholar 

  13. Huang H (2018) Matrix metalloproteinase-9 (MMP-9) as a cancer biomarker and MMP-9 biosensors: recent advances. Sensors (Basel). https://doi.org/10.3390/s18103249

    Article  PubMed  PubMed Central  Google Scholar 

  14. Nieto MA (2011) The ins and outs of the epithelial to mesenchymal transition in health and disease. Annu Rev Cell Dev Biol 27:347–376. doi:https://doi.org/10.1146/annurev-cellbio-092910-154036

    Article  CAS  PubMed  Google Scholar 

  15. Zavadil J, Bottinger EP (2005) TGF-beta and epithelial-to-mesenchymal transitions. Oncogene 24(37):5764–5774. doi:https://doi.org/10.1038/sj.onc.1208927

    Article  CAS  PubMed  Google Scholar 

  16. Tauriello DVF, Sancho E, Batlle E (2021) Overcoming TGFbeta-mediated immune evasion in cancer. Nat Rev Cancer. doi:https://doi.org/10.1038/s41568-021-00413-6

    Article  PubMed  Google Scholar 

  17. De Craene B, Berx G (2013) Regulatory networks defining EMT during cancer initiation and progression. Nat Rev Cancer 13(2):97–110. doi:https://doi.org/10.1038/nrc3447

    Article  CAS  PubMed  Google Scholar 

  18. Saitoh M (2015) Epithelial-mesenchymal transition is regulated at post-transcriptional levels by transforming growth factor-beta signaling during tumor progression. Cancer Sci 106(5):481–488. doi:https://doi.org/10.1111/cas.12630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Miyashita N, Saito A (2021) Organ specificity and heterogeneity of cancer-associated fibroblasts in colorectal cancer. Int J Mol Sci. https://doi.org/10.3390/ijms222010973

    Article  PubMed  PubMed Central  Google Scholar 

  20. Lamouille S, Xu J, Derynck R (2014) Molecular mechanisms of epithelial-mesenchymal transition. Nat Rev Mol Cell Biol 15(3):178–196. doi:https://doi.org/10.1038/nrm3758

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Lamptey J, Czika A, Aremu JO, Pervaz S, Adu-Gyamfi EA, Otoo A, Li F, Wang YX, Ding YB (2021) The role of fascin in carcinogenesis and embryogenesis. Exp Cell Res. https://doi.org/10.1016/j.yexcr.2021.112885

    Article  PubMed  Google Scholar 

  22. Liu P, Zhang Y, Zhang S, Peng C, Yang W, Li X, Zhang C, Li M, Han J, Lu Y (2021) Integrative overview of IFITMs family based on bioinformatics analysis. Intractable Rare Dis Res 10(3):165–172. https://doi.org/10.5582/irdr.2021.01041

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Not applicable.

Funding

None.

Author information

Authors and Affiliations

Authors

Contributions

YL, LS and WL designed the research; YL, MZ, JW and ZW conducted the experiment; YF, LL and ML analyzed the data; all authors wrote the article together and agreed the submission.

Corresponding authors

Correspondence to Li Sun or Wangjun Liao.

Ethics declarations

Conflict of interest

The authors declare there is no conflict of interests in the study.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Yonggang Liu and Minyu Zhou—co-first author.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (TIF 384.1 kb)

SB inhibited the stimulation effects of TGF-β1 in IFITM2 expression and the progression of EMT in MGC803 and MKN45 cells. (A–C) comparison of expression changes in IFITM2, epithelial and mesenchymal markers 48 h after either TGF-β1 or SB treatment. *Suggests for P < 0.05, ** for P < 0.01 and *** for P < 0.001 in compared to control group

Supplementary material 2 (TIF 318.4 kb)

siIFITM2 was efficiently to inhibit the expression of IFITM2 in both cell lines. (A and B) The efficiency of siIFITM2 was evaluated with real-time PCR; and (C-F) Western blotting; *Suggests for P < 0.05, ** for P < 0.01 and *** for P < 0.001 in compared to control group

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Zhou, M., Wu, J. et al. Interferon-induced transmembrane protein 2 promotes epithelial-mesenchymal transition by activating transforming growth factor-β1/small mother against decapentaplegic 2 signaling in gastric cancer. Mol Biol Rep 49, 997–1006 (2022). https://doi.org/10.1007/s11033-021-06919-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-021-06919-4

Keywords

Navigation